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Abstract. For a subdomain Ω of the right half-plane H, Chuaqui and Gevirtz showed the
following theorem: the image f(D) of the unit disk D under an analytic function f on D is a
quasidisk whenever f ′(D) ⊂ Ω if and only if there exists a compact subset K of H such that
sK ∩ (H \ Ω) 6= ∅ for any positive number s. We show that this condition is equivalent to the
inequality W (Ω) < 2, where W (Ω) stands for the circular width of the domain Ω.

1. Introduction

Let f be an analytic function on a convex domain D in the complex plane C.
The Noshiro–Warschawski theorem asserts that if the derivative f ′ maps D into the
right half-plane H = {w ∈ C : Re w > 0}, then f must be univalent on D. The
second author observed in [7] that furthermore if D is mapped by f ′ into the disk
|(w−f ′(0))/(w+f ′(0))| < k(< 1) then f extends to a k-quasiconformal mapping of
the Riemann sphere. Here, a homeomorphism g of the Riemann sphere Ĉ = C∪{∞}
is called k-quasiconformal if g has locally square integrable partial derivatives on
C \ {g−1(∞)} with |gz̄/gz| ≤ k a.e. A homeomorphism of the Riemann sphere is
called quasiconformal if it is k-quasiconformal for some constant 0 ≤ k < 1.

In the case when D is the unit disk D, Chuaqui and Gevirtz [1] obtained a more
refined result. To state their result, we introduce terminology due to them.

Definition 1. A closed subset X of the right half-plane H is said to have
property M if there exists a compact subset K of H for which sK ∩X 6= ∅ for every
s > 0.

In the above, sK means the set {w : w/s ∈ K}. We are now ready to state the
theorem of Chuaqui and Gevirtz.

Theorem A. (Chuaqui–Gevirtz [1]) Let Ω be a subdomain of the right half-
plane H. Every analytic function f on the unit disk D with f ′(D) ⊂ Ω extends to
a quasiconformal mapping of the Riemann sphere if and only if H \Ω has property
M .
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A subdomain of the Riemann sphere is called a quasidisk if it is the image of
the unit disk under a quasiconformal mapping of the Riemann sphere. Note that
for a univalent analytic function f on D, it extends to a quasiconformal mapping
of Ĉ if and only if f(D) is a quasidisk (see [5]).

Though the above theorem seems to be very useful, the property M is not
necessarily easy to handle. The main objective of this note is to provide more
convenient quantities characterizing the property M . To this end, we employ the
hyperbolic geometry of the domains involved.

We denote by λΩ(z)|dz| the hyperbolic metric with curvature −4 of a hyper-
bolic subdomain Ω of C. Note that the hyperbolic metric has the monotonicity
property: λΩ(w) ≤ λΩ0(w) for Ω0 ⊂ Ω. Let dΩ(w1, w2) denote the hyperbolic dis-
tance induced by λΩ. For instance, the right half-plane has the hyperbolic metric
λH(w) = 1/(2Re w) and

dH(w1, w2) = arctanh

∣∣∣∣
w1 − w2

w1 + w2

∣∣∣∣ .

We also denote by dΩ(w, A) the hyperbolic distance from a point w ∈ Ω to a subset
A of the closure Ω of Ω, namely, dΩ(w, A) = infa∈A dΩ(w, a). Here, we define dΩ(w, a)
to be +∞ when a ∈ ∂Ω.

The authors introduced in [4] the notion of circular width of a proper subdomain
of the punctured plane C∗ = C \ {0}. We now recall the definition of the circular
width. If 0 /∈ Ω, then the circular width W (Ω) of Ω (about the origin) is defined by

W (Ω) =

(
inf
w∈Ω

|w|λΩ(w)

)−1

.

Various properties of circular width were given in [4]. Among them, the mono-
tonicity property is most important here: W (Ω0) ≤ W (Ω) if Ω0 ⊂ Ω ⊂ C∗. This
is an immediate consequence of the monotonicity of the hyperbolic metric. Since
W (H) = 2, we see that the inequality W (Ω) ≤ 2 holds for any subdomain Ω of H.
Now those subdomains of H whose complements have property M can be charac-
terized by the following.

Theorem 1. Let Ω be a subdomain of the right half-plane H. Then the follow-
ing three conditions are equivalent.

(i) H \ Ω has property M .
(ii) The quantity δ(Ω) = sup

a∈Ω∩R
dH(a, ∂Ω) is finite.

(iii) The circular width W (Ω) of Ω is less than 2.

Here, we define δ(Ω) to be 0 if Ω ∩ R = ∅. The proof of this theorem will be
given in a more quantitative form in the following sections.

In [4], the authors made attempts to give a sufficient or a necessary condition
for a subdomain Ω of H to satisfy W (Ω) < 2. Theorem 1 also gives a complete
solution to this problem.
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2. Proof of the theorem

Let us start with the easier part, namely, the proof of the equivalence (i)⇔ (ii).
Here and in what follows, we denote by ∆(a, ρ) the (open) hyperbolic disk within
H centered at a with radius ρ, or more concretely,

(2.1) ∆(a, ρ) = {w ∈ H : dH(w, a) < ρ} = {w :
∣∣w−a
w+ā

∣∣ < tanh ρ}.
Note that the disk ∆(a, ρ), a > 0, is described as the Euclidean disk D(c, r) = {w :
|w − c| < r}, where

(2.2) c = a
1 + m2

1−m2
= a cosh(2ρ), r = a

2m

1−m2
= a sinh(2ρ), m = tanh ρ.

We denote by ∆̄(a, ρ) the closure of ∆(a, ρ). Since any compact subset of H is
contained in the closed hyperbolic disk ∆̄(a, ρ) for a suitable choice of a > 0 and
ρ > 0, we may replace K in Definition 1 by a closed disk of this form.

We now prove that (i) implies (ii). We assume that for some a0 > 0 and ρ,
K = ∆̄(a0, ρ) satisfies sK ∩ (H \ Ω) 6= ∅ for all s > 0. Let a ∈ Ω ∩R and choose
s > 0 so that a = sa0. Then, we can take a point b in sK ∩ ∂Ω. In view of (2.1),
we get sK = ∆̄(sa0, ρ) = ∆̄(a, ρ). Thus dH(a, b) ≤ ρ, which implies dH(a, ∂Ω) ≤ ρ.
Since a ∈ Ω ∩R is arbitrary, we obtain δ(Ω) ≤ ρ.

Conversely, we assume that ρ := δ(Ω) is finite. Let K = ∆̄(1, ρ). If sK ∩ (H \
Ω) = ∅, then sK = ∆̄(s, ρ) ⊂ Ω. Since sK is compact, ∆(s, ρ′) ⊂ Ω for some ρ′ > ρ.
Thus dH(s, ∂Ω) ≥ ρ′ > ρ, which contradicts the assumption that δ(Ω) = ρ.

Thus the proof of (i) ⇔ (ii) is complete. ¤
We next show the equivalence of (ii) and (iii) with concrete estimates. To this

end, we estimate the hyperbolic metric of the punctured half-plane Hb := H \ {b}.
Lemma 2. For b ∈ H and w ∈ Hb, the inequality

2|w|λHb
(w) ≥ sinh t

t
, t = log

∣∣∣∣
w + b̄

w − b

∣∣∣∣ ,

holds.

Note that G(w) = log
∣∣w+b̄
w−b

∣∣ is nothing but Green’s function on H with pole at
b.

Proof of Lemma 2. Let g(w) = (w − b)/(w + b̄). Then g maps H conformally
onto the unit disk D and Hb onto the punctured disk D∗ = D \ {0}. Recall that
λD(z) = 1/(1− |z|2), λD∗(z) = 1/(−2|z| log |z|) and thus

λD∗(z)

λD(z)
=

1− |z|2
−2|z| log |z| =

sinh t

t
, t = − log |z|.
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Since λHb
(w)/λH(w) = λD∗(g(w))/λD(g(w)), we obtain

(2.3) 2|w|λHb
(w) =

|w|
Re w

· sinh t

t
≥ sinh t

t
,

where t = − log |g(w)|. ¤
We are now ready to prove that (ii) implies (iii). Let ρ = δ(Ω) < ∞. If ρ = 0,

then Ω is contained either in the sector H+ = {w ∈ H : Im w > 0} or in H− =
{w ∈ H : Im w < 0}. Since W (H+) = W (H−) = 1 (see [4, Example 5.1]), we have
W (Ω) ≤ W (H±) = 1 < 2 in this case.

From now on, we suppose that ρ > 0, in other words, Ω ∩ R 6= ∅. Let m =
tanh ρ and take θ ∈ (0, π/2) so that sin θ = 2m/(1 + m2) = tanh(2ρ). Note that
m = tan(θ/2). In view of (2.2), one can see that a ray emanating from the origin
which is tangent to the circle ∂∆(a, ρ), a > 0, forms an angle θ or −θ with the
positive real axis.

Let w ∈ Ω. Note that with respect to the hyperbolic distance dH, |w| is the
nearest point to w among the positive real axis and

(2.4) d = dH(w, |w|) = arctanh

(
tan

ψ

2

)
, ψ = |arg w|.

Set a = |w|. If a ∈ Ω, then there exists a point b in ∆̄(a, ρ)∩∂Ω because dH(a, ∂Ω) ≤
δ(Ω) = ρ. Therefore, dH(w, b) ≤ dH(w, a) + dH(a, b) ≤ d + ρ. If a /∈ Ω, then there
exists a point b ∈ ∂Ω on the closed hyperbolic segment joining w and a in H. Thus
dH(w, b) ≤ dH(w, a) = d. In either case, we therefore have a point b ∈ ∂Ω such that
dH(w, b) ≤ d + ρ.

We now assume that ψ ≤ θ. Then, we see that d ≤ arctanh(tan(θ/2)) = ρ and
hence, dH(w, b) ≤ 2ρ. Lemma 2 now yields

2|w|λΩ(w) ≥ 2|w|λHb
(w) ≥ sinh t

t
.

Here,

et =

∣∣∣∣
w + b̄

w − b

∣∣∣∣ =
1

tanh dH(w, b)
≥ 1

tanh(2ρ)
= coth(2ρ).

Since the function sinh x/x is increasing in x > 0, we have

sinh t

t
≥ sinh(log(coth(2ρ)))

log(coth(2ρ))
=

1

sinh(4ρ) log(coth(2ρ))
.

Let us memorize the fact that the right-hand side is greater than 1 since sinh x/x > 1
for x > 0.

When w ∈ Ω satisfies |arg w| > θ, we encounter a difficulty with the above
method (see computations in the final section). However, we have a much simpler
but crude estimate:

2|w|λΩ(w) ≥ 2|w|λH(w) =
1

cos arg w
≥ 1

cos θ
=

1 + m2

1−m2
= cosh(2ρ).
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Therefore, for an arbitrary w ∈ Ω, we obtain the inequality

2|w|λΩ(w) ≥ min

{
cosh(2ρ),

1

sinh(4ρ) log(coth(2ρ))

}
.

Since the right-hand side in the above depends only on ρ and is greater than 1, we
conclude that W (Ω) < 2.

We next show that (iii) implies (ii). We will need to compute the circular width
of ∆(a, ρ).

Lemma 3. W (∆(a, ρ)) = 2 tanh ρ for a > 0 and ρ > 0.

Proof. First we recall that the Euclidean disk D(c, r) = {w : |w − c| < r} with
0 < r ≤ c has circular width

(2.5) W (D(c, r)) =
2r/c

1 +
√

1− (r/c)2
,

see [4, Example 5.4]. Set m = tanh ρ. Then, in view of (2.2), we have

W (∆(a, ρ)) =
4m/(1 + m2)

1 +
√

1− (2m/(1 + m2))2
= 2m,

and thus the proof is complete. ¤
Let a ∈ Ω ∩ R and let ρ ≤ dH(a, ∂Ω). Then ∆(a, ρ) ⊂ Ω. The monotonicity

of the circular width together with the last lemma implies W (Ω) ≥ W (∆(a, ρ)) =
2 tanh ρ, which implies ρ ≤ arctanh(W (Ω)/2). Thus we have proved the inequality
δ(Ω) ≤ arctanh(W (Ω)/2) and we conclude that (iii) implies (ii).

3. Concluding remarks

It is well known that a bounded simply connected domain in C is a quasidisk
precisely if it is a linearly connected John disk. Chuaqui and Gevirtz define a John
disk to be a bounded simply connected domain with certain property, and in fact,
they prove that f is bounded if f ′(D) ⊂ Ω for a subdomain Ω of H for which H \Ω
has property M . We can now give another proof for that with a concrete bound by
combining Theorem 1 with the following result (see [4, Theorem 6.1] and its proof).

Theorem B. Let Ω be a proper subdomain of the punctured plane C∗ with
W (Ω) < 2. Suppose that an analytic function f on the unit disk D with f(0) =
f ′(0)− 1 = 0 is given. If f ′(D) ⊂ Ω, then the pre-Schwarzian derivative Tf = f ′′/f ′

of f satisfies the inequality

‖Tf‖ := sup
z∈D

(1− |z|2)|Tf (z)| ≤ W (Ω)

and the image f(D) is contained in the disk |w| < 2W (Ω)/2/(1−W (Ω)/2).

We remark that the bound 2W (Ω)/2/(1−W (Ω)/2) can be replaced by the sharp
one

∫ 1

0
[(1+x)/(1−x)]W (Ω)/2dx. For more information about the bound, see also [3,

§2].
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One might raise a similar problem: What is a characterizing property of subdo-
mains Ω of H for which f ′(D) ⊂ Ω implies boundedness of the function f? As we
observed above, the condition W (Ω) < 2 is sufficient. But, it is not necessary. The
simplest example is Ω = D(1, 1) = {w : |w − 1| < 1}. Obviously f ′(D) ⊂ D(1, 1)
implies |f(z)− f(0)| < 2 but W (D(1, 1)) = 2 by (2.5). In this problem, the shape
of the domain Ω near the point at infinity is dominating the boundedness property.
This sort of problem was also considered by MacGregor and Rønning [6].

We also remark that, keeping Theorem 1 in mind, Theorem B gives another
way to prove a part of the theorem of Chuaqui and Gevirtz. Indeed, if f ′(D) ⊂ Ω
and W (Ω) < 2, then Theorem B implies ‖Tf‖ < 2. Now we recall a theorem of Kari
and Per Hag [2, Theorem 4.3]: if a univalent function f on D satisfies ‖Tf‖ < 2,
then f(D) is a John disk. In our case, we know that f is univalent by the Noshiro–
Warschawski theorem when Re f ′ > 0. Thus, the theorem of Hag implies that f(D)
is a John disk if f ′(D) ⊂ Ω and if W (Ω) < 2.

As a by-product of the proof of Theorem 1 in Section 2, we obtain the following
quantitative result:

2 tanh δ(Ω) ≤ W (Ω) ≤ 2 max

{
1

cosh(2δ(Ω))
, sinh(4δ(Ω)) log(coth(2δ(Ω)))

}
,

whenever δ(Ω) > 0. This estimate is unfortunately not good when δ(Ω) is small.
We supply a better but more complicated estimate, which might be of future use.

In the first part of the proof of (ii)⇔ (iii) in Theorem 1, we took a point b ∈ ∂Ω
such that dH(w, b) ≤ d+ρ, where d is given by (2.4). By using the relation in (2.3),
we now have

(3.1) 2|w|λΩ(w) ≥ 2|w|λHb
(w) =

1

cos ψ
· sinh t

t
,

where ψ = |arg w| and t = log |(w+b̄)/(w−b)|. Since et = coth(dH(w, b)) ≥ coth(d+
ρ) and 1/ cos ψ = (1 + tan2(ψ/2))/(1− tan2(ψ/2)) = (1 + tanh2 d)/(1− tanh2 d) =
cosh(2d), we obtain

2|w|λΩ(w) ≥ cosh(2d) sinh(log(coth(d + ρ)))

log(coth(d + ρ))
=

cosh(2d)

sinh(2d + 2ρ) log(coth(d + ρ))
.

Set

F (x, ρ) =
sinh(2x + 2ρ) log(coth(x + ρ))

cosh(2x)

= (sinh(2ρ) + cosh(2ρ) tanh(2x)) log(coth(x + ρ)).

Then

∂xF (x, ρ) = 2
cosh(2ρ) log(coth(x + ρ))− cosh(2x)

cosh2(2x)
=

2G(x, ρ)

cosh2(2x)
.

Since G(x, ρ) is decreasing in x > 0, G(0, ρ) = cosh(2ρ) log(coth ρ) − 1 > 0 and
G(x, ρ) → −∞ as x → +∞, we see that there is a unique root x = ξ(ρ) of the
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equation G(x, ρ) = 0 in x > 0 for a fixed ρ ≥ 0. The function F (x, ρ) takes its
maximum at the point x = ξ(ρ), and thus the inequalities

1

2|w|λΩ(w)
≤ F (d, ρ) ≤ F (ξ(ρ), ρ) =

sinh(2ξ(ρ) + 2ρ)

cosh(2ρ)

= sinh(2ξ(ρ)) + cosh(2ξ(ρ)) tanh(2ρ) =: µ(ρ)

hold. The partial derivative ∂ρF (x, ρ) = 2(cosh(2x+2ρ) log(coth(x+ρ))−1)/ cosh(2x)
is positive and thus F (x, ρ) is increasing in ρ. Therefore, for 0 ≤ ρ < ρ′, we have

µ(ρ) = F (ξ(ρ), ρ) < F (ξ(ρ), ρ′) ≤ F (ξ(ρ′), ρ′) = µ(ρ′),

which means that µ(ρ) is increasing in ρ. Note that µ(ρ) < 1 since F (x, ρ) < 1. (We
can also show that ξ(ρ) is decreasing in ρ.) We summarize the above observation in
the following form.

Proposition 4. Let Ω be a subdomain of the right half-plane H with δ(Ω) > 0.
Then

W (Ω) ≤ 2µ(δ(Ω)).

Here, the function µ is given by
µ(ρ) = sinh(2ξ(ρ)) + cosh(2ξ(ρ)) tanh(2ρ), ρ ≥ 0,

where x = ξ(ρ) is the unique root of the equation
cosh(2ρ) log(coth(x + ρ)) = cosh(2x)

in x > 0. The function µ is strictly increasing and less than 1 on [0,∞).

For instance, ξ(0) ≈ 0.3109 and µ(0) ≈ 0.6627. On the other hand, as we saw
before, when δ(Ω) = 0, we have W (Ω)/2 ≤ 1/2. Thus, the above estimate is not
asymptotically sharp. The main reason is probably that we used only one point b
of ∂Ω in the estimate (3.1) of λΩ(w) in spite of the fact that there would be many
other boundary points near the positive real axis when δ(Ω) is very small.
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