SUPERHARMONIC FUNCTIONS AND DIFFERENTIAL EQUATIONS INVOLVING MEASURES FOR QUASILINEAR ELLIPTIC OPERATORS WITH LOWER ORDER TERMS

Takayori Ono
Fukuyama University
Gakuencho, Fukuyama, 729-0292 Japan; ono@fuhc.fukuyama-u.ac.jp

Dedicated to Professor Yoshihiro Mizuta for his sixtieth birthday.

Abstract

We consider superharmonic functions relative to a quasi-linear second order elliptic differential operator L with lower order term and weighted structure conditions. We show that, given a nonnegative finite Radon measure ν, there is a superharmonic function u satisfying $L u=\nu$ with weak zero boundary values. Moreover, we give a pointwise upper estimate for superharmonic functions in terms of the Wolff potential.

Introduction

Let G be an open set in $\mathbf{R}^{N}(N \geq 2)$. In the classical potential theory, it is well known that given an ordinary superharmonic function u in G, there exists a nonnegative Radon measure ν in G such that the equation

$$
\begin{equation*}
-\operatorname{div}(\nabla u)=\nu \tag{1}
\end{equation*}
$$

holds in the distribution sense in G. Conversely, if G is bounded and ν is a nonnegative finite Radon measure, then

$$
\begin{equation*}
u(x)=\int_{G} g(x, y) d \nu(y) \tag{2}
\end{equation*}
$$

is superharmonic and satisfies the equation (1), where $g(x, y)$ is the Green function for the Laplace equation (for example, see [AG, Chapter 4]).

In nonlinear setting, no integral representation such as (2) is available. However, in [KM1], [KM2] and [M], relations between \mathscr{A}-superharmonic functions (see [HKM, Chapter 7] for the definition) and solutions for quasi-linear second order elliptic differential equations involving measures

$$
\begin{equation*}
-\operatorname{div} \mathscr{A}(x, \nabla u(x))=\nu \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification: Primary 31C45; Secondary 31B05, 35J60.
Key words: $(\mathscr{A}, \mathscr{B})$-superharmonic function, quasi-linear equation, involving measure, Wolff potential.
are investigated, where $\mathscr{A}(x, \xi): \mathbf{R}^{N} \times \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ satisfies structure conditions of p-th order with $1<p<\infty$. They showed that for every nonnegative finite Radon measure ν, there is an \mathscr{A}-superharmonic function satisfying the equation (3) with weak zero boundary values. Moreover, they gave a pointwise estimate for an \mathscr{A}-superharmonic function in terms of the Wolff potential. The existence and the uniqueness of the solution to more generally quasi-linear elliptic equations involving measures, including the equation (3), have been studied in many papers $[B G],[B+5]$, $[R]$ and $[K X]$, etc.

On the other hand, in the previous papers [MO1], [MO2] and [MO3], we developed a potential theory for elliptic quasi-linear equations of the form

$$
\begin{equation*}
-\operatorname{div} \mathscr{A}(x, \nabla u(x))+\mathscr{B}(x, u(x))=0 \tag{E}
\end{equation*}
$$

on a domain Ω in $\mathbf{R}^{N}(N \geq 2)$, where $\mathscr{A}(x, \xi): \Omega \times \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ satisfies weighted structure conditions of p-th order with weight $w(x)$ as in [HKM] and [M], and $\mathscr{B}(x, t): \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ is nondecreasing in t (see section 1 below for more details). We called superharmonic functions relative to the equation (E) ($\mathscr{A}, \mathscr{B})$-superharmonic functions (see section 2 below for the definition).

The purpose of the present paper is to extend results in [KM1], [KM2] and $[\mathrm{M}]$ to those relative to the equation (E), namely, to investigate relations between $(\mathscr{A}, \mathscr{B})$-superharmonic functions and solutions of the equation

$$
-\operatorname{div} \mathscr{A}(x, \nabla u(x))+\mathscr{B}(x, u(x))=\nu
$$

with \mathscr{A} and \mathscr{B} as above.
We first investigate properties of $(\mathscr{A}, \mathscr{B})$-superharmonic functions. Actually we show the "ess lim inf" property, the fundamental convergence theorem, and the integrability of $(\mathscr{A}, \mathscr{B})$-superharmonic functions. In section 3, we show that every $(\mathscr{A}, \mathscr{B})$-superharmonic function determines a nonnegative Radon measure ν by the equation (E_{ν}) and conversely for every nonnegative finite Radon measure ν, there is an $(\mathscr{A}, \mathscr{B})$-superharmonic function u satisfying the equation $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values. In section 4 , we give a pointwise upper estimate for $(\mathscr{A}, \mathscr{B})$ superharmonic functions in terms of the weighted Wolff potentials, and using this estimate, we can show that an $(\mathscr{A}, \mathscr{B})$-superharmonic function is finite except on \mathscr{A}-polar set (see [HKM, Chapter 10] for the definition). Finally, in section 5, we discuss the uniqueness of the so-called entropy solution to the equation $\left(\mathrm{E}_{\nu}\right)$.

Throughout this paper, we use some standard notation without explanation. One may refer to [HKM] for most of such notation. Also, we say that ν is a Radon measure if ν is a nonnegative, Borel regular measure which is finite on compact sets.

1. Preliminaries

Let Ω be a domain in $\mathbf{R}^{N}(N \geq 2)$. As in [MO1], [MO2] and [MO3] we assume that $\mathscr{A}: \Omega \times \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ and $\mathscr{B}: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ satisfy the following conditions for $1<p<\infty$ and a weight w which is p-admissible in the sense of [HKM]:
(A.1) $x \mapsto \mathscr{A}(x, \xi)$ is measurable on Ω for every $\xi \in \mathbf{R}^{N}$ and $\xi \mapsto \mathscr{A}(x, \xi)$ is continuous for a.e. $x \in \Omega$;
(A.2) $\mathscr{A}(x, \xi) \cdot \xi \geq \alpha_{1} w(x)|\xi|^{p}$ for all $\xi \in \mathbf{R}^{N}$ and a.e. $x \in \Omega$ with a constant $\alpha_{1}>0 ;$
(A.3) $|\mathscr{A}(x, \xi)| \leq \alpha_{2} w(x)|\xi|^{p-1}$ for all $\xi \in \mathbf{R}^{N}$ and a.e. $x \in \Omega$ with a constant $\alpha_{2}>0 ;$
(A.4) $\left(\mathscr{A}\left(x, \xi_{1}\right)-\mathscr{A}\left(x, \xi_{2}\right)\right) \cdot\left(\xi_{1}-\xi_{2}\right)>0$ whenever $\xi_{1}, \xi_{2} \in \mathbf{R}^{N}, \xi_{1} \neq \xi_{2}$, for a.e. $x \in \Omega$;
(B.1) $x \mapsto \mathscr{B}(x, t)$ is measurable on Ω for every $t \in \mathbf{R}$ and $t \mapsto \mathscr{B}(x, t)$ is continuous for a.e. $x \in \Omega$;
(B.2) For any open set $G \Subset \Omega$, there is a constant $\alpha_{3}(G) \geq 0$ such that $|\mathscr{B}(x, t)| \leq$ $\alpha_{3}(G) w(x)\left(|t|^{p-1}+1\right)$ for all $t \in \mathbf{R}$ and a.e. $x \in G$;
(B.3) $t \mapsto \mathscr{B}(x, t)$ is nondecreasing on \mathbf{R} for a.e. $x \in \Omega$.

We consider elliptic quasi-linear equations of the form

$$
\begin{equation*}
-\operatorname{div} \mathscr{A}(x, \nabla u(x))+\mathscr{B}(x, u(x))=0 \tag{E}
\end{equation*}
$$

on Ω.
For the nonnegative measure $\mu: d \mu(x)=w(x) d x$ and an open subset G of Ω, we consider the weighted Sobolev spaces $H^{1, p}(G ; \mu), H_{0}^{1, p}(G ; \mu)$ and $H_{\text {loc }}^{1, p}(G ; \mu)$ (see [HKM] for details).

Let G be an open subset of Ω. A function $u \in H_{\text {loc }}^{1, p}(G ; \mu)$ is said to be a (weak) solution of (E) in G if

$$
\int_{G} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x=0
$$

for all $\varphi \in C_{0}^{\infty}(G)$. A function $u \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$ is said to be a supersolution (resp. subsolution) of (E) in G if

$$
\int_{G} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x \geq 0 \quad(\text { resp. } \leq 0)
$$

for all nonnegative $\varphi \in C_{0}^{\infty}(G)$.
Proposition 1.1. (Comparison principle) [O1, Lemma 3.6] Let G be a bounded open set in Ω and let $u \in H^{1, p}(G ; \mu)$ be a supersolution and $v \in H^{1, p}(G ; \mu)$ a subsolution of (E) in G. If $\min (u-v, 0) \in H_{0}^{1, p}(G ; \mu)$, then $u \geq v$ a.e. in G.

A continuous solution of (E) in an open subset G of Ω is called $(\mathscr{A}, \mathscr{B})$-harmonic in G.

We say that an open set G in Ω is $(\mathscr{A}, \mathscr{B})$-regular, if $G \Subset \Omega$ and for any $\theta \in H_{\mathrm{loc}}^{1, p}(\Omega ; \mu)$ which is continuous at each point of ∂G, there exists a unique $h \in C(\bar{G}) \cap H^{1, p}(G ; \mu)$ such that $h=\theta$ on ∂G and h is $(\mathscr{A}, \mathscr{B})$-harmonic in G.

Proposition 1.2. ([MO1, Theorem 1.4] and [HKM, Theorem 6.31]) Any ball $B \Subset \Omega$ and any polyhedron $P \Subset \Omega$ are $(\mathscr{A}, \mathscr{B})$-regular.

We recall the definition of the (p, μ)-capacity which is given in [HKM]. For a compact set K and an open set G such that $K \subset G \subset \mathbf{R}^{N}$, let

$$
\operatorname{cap}_{p, \mu}(K, G)=\inf \int_{G}|\nabla u|^{p} d \mu
$$

where the infimum is taken over all $u \in C_{0}^{\infty}(G)$ with $u \geq 1$ on K. Moreover, for an open set $U \subset G$, set

$$
\operatorname{cap}_{p, \mu}(U, G)=\sup _{\substack{K \subset U \\ K \text { compact }}} \operatorname{cap}_{p, \mu}(K, G),
$$

and, finally, for an arbitrary set $E \subset G$, define

$$
\operatorname{cap}_{p, \mu}(E, G)=\inf _{\substack{E \subset U \subset G \\ U \text { open }}} \operatorname{cap}_{p, \mu}(U, G)
$$

and the number $\operatorname{cap}_{p, \mu}(E, G)$ is called the (p, μ)-capacity of (E, G).
If a set $E \subset \mathbf{R}^{N}$ satisfies

$$
\operatorname{cap}_{p, \mu}(E \cap G, G)=0
$$

for all open sets $G \subset \mathbf{R}^{N}$, then we say that E is of (p, μ)-capacity zero, and write $\operatorname{cap}_{p, \mu} E=0$. Also if a property holds except on a set of (p, μ)-capacity zero, we say that it holds (p, μ)-quasieverywhere, or simply (p, μ)-q.e.

For $E \subset \mathbf{R}^{N}$ and $x \in \mathbf{R}^{N}$, let

$$
W_{p, \mu}(x, E)=\int_{0}^{1}\left(\frac{\operatorname{cap}_{p, \mu}(B(x, t) \cap E, B(x, 2 t))}{\operatorname{cap}_{p, \mu}(B(x, t), B(x, 2 t))}\right)^{1 /(p-1)} \frac{d t}{t}
$$

In this paper, $B(x, r)$ denotes an open ball with center x and radius r.
Proposition 1.3. ([M, Theorem 5.12], [HKM, Theorem 6.27 and Theorem 8.10]) Suppose that G is an open set with $G \Subset \Omega$. Let $T=\left\{x \in \partial G \mid W_{p, \mu}(x, \complement G)<\infty\right\}$. Then $\operatorname{cap}_{p, \mu} T=0$.

2. Properties of $(\mathscr{A}, \mathscr{B})$-superharmonic functions

In this section, we will investigate properties of $(\mathscr{A}, \mathscr{B})$-superharmonic functions. Actually we will show the "ess lim inf" property, the fundamental convergence theorem, and the integrability of $(\mathscr{A}, \mathscr{B})$-superharmonic functions.

Let G be an open subset in Ω. A function $u: G \rightarrow \mathbf{R} \cup\{\infty\}$ is said to be $(\mathscr{A}, \mathscr{B})$-superharmonic in G if it is lower semicontinuous, finite on a dense set in G and, for each open set $U \Subset \Omega$ and for $h \in C(\bar{U})$ which is $(\mathscr{A}, \mathscr{B})$-harmonic in
$U, u \geq h$ on ∂U implies $u \geq h$ in $U .(\mathscr{A}, \mathscr{B})$-subharmonic functions are similarly defined. Note that a continuous supersolution of (E) is $(\mathscr{A}, \mathscr{B})$-superharmonic (cf. [MO1, §2]). If u is $(\mathscr{A}, \mathscr{B})$-superharmonic in G, then so is $u+c$ for any nonnegative constant c. If u_{1} and u_{2} are $(\mathscr{A}, \mathscr{B})$-superharmonic in G, then so is $\min \left(u_{1}, u_{2}\right)$.

Lemma 2.1. For any open set $U \Subset \Omega$, there exists a nonnegative bounded continuous (\mathscr{A}, \mathscr{B})-superharmonic function u_{0} in U.

Proof. Let V be an $(\mathscr{A}, \mathscr{B})$-regular open set such that $U \subset V \Subset \Omega$. There exists $h_{0} \in C(\bar{V})$ such that it is $(\mathscr{A}, \mathscr{B})$-harmonic in V and $h_{0}=0$ on ∂V. Then h_{0} is bounded, so that there exists a constant $c \geq 0$ such that $h_{0}+c \geq 0$ in U. Then, $u_{0}=h_{0}+c$ has the required properties.

Proposition 2.1. ([MO1, Corollary 4.1]) Any supersolution of (E) has an $(\mathscr{A}, \mathscr{B})$-superharmonic representative.

In general, an $(\mathscr{A}, \mathscr{B})$-superharmonic function is not always a supersolution (for example, see [HKM, Example 7.47] or [K, p. 108]). Using [MO1, Proposition 1.2], we can show the following proposition in the same manner as in the proof of [HKM, Theorem 7.19 and Corollary 7.20] (see [O2, Proposition 5.2.2] for details).

Proposition 2.2. Let G be an open set in Ω and u be an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G. If there is $g \in H_{\text {loc }}^{1, p}(G ; \mu)$ such that $u \leq g$ a.e. in G, then u is a supersolution of (E) in G.

Corollary 2.1. Let u be an $(\mathscr{A}, \mathscr{B})$-superharmonic functions in an open set $G \subset \Omega$, then $\min (u, k) \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$ for any $k>0$.

Proof. Let $U \Subset G$ and u_{0} be a function as in Lemma 2.1. Then, $u_{k}=\min \left(u, u_{0}+\right.$ $k)$ is a bounded $(\mathscr{A}, \mathscr{B})$-superharmonic function, and hence it belongs to $H_{\mathrm{loc}}^{1, p}(U ; \mu)$ by the above proposition. Hence $\min (u, k)=\min \left(u_{k}, k\right) \in H_{\text {loc }}^{1, p}(U ; \mu)$. Since $U \Subset G$ is arbitrary, we have the required assertion.

Next, we will establish the "ess lim inf" property for (\mathscr{A}, \mathscr{B})-superharmonic functions (Theorem 2.1). To show this property, we prepare the following lemma.

Lemma 2.2. For each $x_{0} \in \Omega$ and $\gamma \in \mathbf{R}$ there exist a ball $B\left(x_{0}, r\right) \Subset \Omega$ and an $(\mathscr{A}, \mathscr{B})$-harmonic function h on B such that $h\left(x_{0}\right)=\gamma$.

Proof. Let $T>0$ such that $-T \leq \gamma \leq T$. Choose $B_{0}=B\left(x_{0}, r_{0}\right)$ with $\overline{B_{0}} \subset \Omega$. Set $b_{1}(x)=\mathscr{B}(x, T+1), b_{2}(x)=\mathscr{B}(x,-T-1)$ and u_{j} be the continuous solution of $-\operatorname{div} \mathscr{A}(x, \nabla u)+b_{j}(x)=0$ in B_{0} with boundary values 0 on $\partial B_{0}(j=1,2)$. Since each u_{j} is continuous, there is $r>0\left(r \leq r_{0}\right)$ such that $\left|u_{j}-u_{j}\left(x_{0}\right)\right| \leq 1$ on $B=B\left(x_{0}, r\right), j=1,2$. Set $v_{1}=u_{1}-u_{1}\left(x_{0}\right)+T$ and $v_{2}=u_{2}-u_{2}\left(x_{0}\right)-T$ on \bar{B}. Since $v_{1} \leq T+1$ on B,

$$
-\operatorname{div} \mathscr{A}\left(x, \nabla v_{1}(x)\right)+\mathscr{B}\left(x, v_{1}(x)\right) \leq-\operatorname{div} \mathscr{A}\left(x, \nabla u_{1}(x)\right)+b_{1}(x)=0
$$

on B. Hence, since v_{1} is continuous, v_{1} is $(\mathscr{A}, \mathscr{B})$-subharmonic in B. Similarly we see that v_{2} is $(\mathscr{A}, \mathscr{B})$-superharmonic in B. Set $T_{1}=\sup _{B} v_{1}+1$ and $T_{2}=$
$-\inf _{B} v_{2}+1$. Then $T \leq T_{j}<\infty, j=1,2$. Let h_{t} be the $(\mathscr{A}, \mathscr{B})$-harmonic function on B with boundary values t on ∂B. By the comparison principle, we have $h_{T_{1}}\left(x_{0}\right) \geq v_{1}\left(x_{0}\right)=T$ and $h_{-T_{2}}\left(x_{0}\right) \leq v_{2}\left(x_{0}\right)=-T$. Since $t \mapsto h_{t}\left(x_{0}\right)$ is continuous (see [MO1, Corollary 3.1 and the proof of Proposition 3.1]), it follows that

$$
\left\{h_{t}\left(x_{0}\right) \mid-T_{2} \leq t \leq T_{1}\right\} \supset[-T, T],
$$

as required.
To show the "ess lim inf" property, we need the following proposition (see [MO1, Proposition 2.3]).

Proposition 2.3. (Poisson modification) Let G be an open set in Ω and let $V \Subset G$ be an $(\mathscr{A}, \mathscr{B})$-regular open set. For an $(\mathscr{A}, \mathscr{B})$-superharmonic function u on G, we define

$$
u_{V}=\sup \{h \in C(\bar{V}) \mid h \leq u \text { on } \partial V \text { and } h \text { is }(\mathscr{A}, \mathscr{B}) \text {-harmonic in } V\} .
$$

Then

$$
P(u, V):= \begin{cases}u & \text { in } G \backslash V, \\ u_{V} & \text { in } V\end{cases}
$$

is $(\mathscr{A}, \mathscr{B})$-superharmonic in G and $(\mathscr{A}, \mathscr{B})$-harmonic in V, and $P(u, V) \leq u$ in G. If $u \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$, then $\left.u\right|_{V}-u_{V} \in H_{0}^{1, p}(V ; \mu)$.

Theorem 2.1. (The "ess lim inf" property) Let G be an open subset in Ω. If u is an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G, then $u(x)=\operatorname{ess} \liminf _{y \rightarrow x} u(y)$ for each $x \in G$.

Proof. Fix $x \in G$ and let $\lambda=\operatorname{ess}^{\lim \inf _{y \rightarrow x} u(y) . ~ T h e n ~} \lambda \geq \liminf _{y \rightarrow x} u(y) \geq$ $u(x)$. To show the converse inequality, let $\gamma<\lambda$. By the above lemma, there is a ball $B_{1}=B\left(x, r_{1}\right)$ and an $(\mathscr{A}, \mathscr{B})$-harmonic function h on B_{1} such that $B_{1} \subset G$ and $h(x)=\gamma$. Since h is continuous,

$$
\operatorname{ess} \liminf _{y \rightarrow x}\{u(y)-h(y)\}=\lambda-\gamma>0
$$

Hence there is $B=B(x, r)$ with $0<r<r_{1}$ such that $u>h$ a.e. on B. Now, $\min (u, h)$ is $(\mathscr{A}, \mathscr{B})$-superharmonic on B_{1} and $\min (u, h) \leq h$, which assures $\min (u, h)$ $\in H^{1, p}(B ; \mu)$ by Proposition 2.2. Let $0<\rho<r$ and $v=P(\min (u, h), B(x, \rho))$ in the notation in Proposition 2.3. Then v is a supersolution of (E) on B by Proposition 2.2, $v \leq \min (u, h)$ and $\min (u, h)-v \in H_{0}^{1, p}(B ; \mu)$. Hence, noting that $\min (u, h)=h$ a.e. on B, we have

$$
\int_{B} \mathscr{A}(x, \nabla v) \cdot(\nabla h-\nabla v) d x+\int_{B} \mathscr{B}(x, v)(h-v) d x \geq 0
$$

and

$$
\int_{B} \mathscr{A}(x, \nabla h) \cdot(\nabla h-\nabla v) d x+\int_{B} \mathscr{B}(x, h)(h-v) d x=0
$$

so that
$\int_{B}[\mathscr{A}(x, \nabla h)-\mathscr{A}(x, \nabla v)] \cdot(\nabla h-\nabla v) d x+\int_{B}[\mathscr{B}(x, h)-\mathscr{B}(x, v)](h-v) d x \leq 0$.
This implies $\nabla h=\nabla v$ a.e. on B by (A.4) and (B.3). Since $v=\min (u, h)=h$ a.e. on $B \backslash B(x, \rho)$, it follows that $v=h$ a.e. on B, and hence $v=h$ everywhere on $B(x, \rho)$ by virtue of continuity of both v and h on $B(x, \rho)$. In particular, $v(x)=$ $h(x)$. Since $v \leq \min (u, h) \leq h$, this implies that $\min (u(x), h(x))=h(x)$, namely, $u(x) \geq h(x)=\gamma$.

Corollary 2.2. Let G be an open subset in Ω and let u and v be ($\mathscr{A}, \mathscr{B})$ superharmonic functions in G. If $u \geq v$ a.e. in G, then $u \geq v$ everywhere in G.

Next, we will show the fundamental convergence theorem (Theorem 2.2). For this, we prepare a proposition and two lemmas. The following proposition can be shown in the same manner as [HKM, Theorem 7.4] (see [O2, Proposition 5.1.4] for details).

Proposition 2.4. Let G be an open subset in Ω. Let \mathscr{F} be a family of $(\mathscr{A}, \mathscr{B})$ superharmonic functions in G which is locally uniformly bounded below. Then the lower semicontinuous regularization of $\inf \mathscr{F}$ is $(\mathscr{A}, \mathscr{B})$-superharmonic in G.

Suppose that G be an open set with $G \Subset \Omega$ and $E \subset G$. Let h be a bounded $(\mathscr{A}, \mathscr{B})$-harmonic function in G, u be an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G with $u \geq h$ in G. We define

$$
\Phi_{E}^{u, h}(G)=\left\{\begin{array}{l|l}
v & \begin{array}{l}
v \text { is }(\mathscr{A}, \mathscr{B}) \text {-superharmonic in } G, \\
v \geq u \text { on } E \text { and } v \geq h \text { on } G \backslash E
\end{array}
\end{array}\right\},
$$

$R_{E}^{u, h}(G)=\inf \Phi_{E}^{u, h}(G)$ and $\hat{R}_{E}^{u, h}(G)(x)=\lim _{r \rightarrow 0} \inf _{B(x, r) \cap G} R_{E}^{u, h}(G)$ for each $x \in G$. By the above proposition, $\hat{R}_{E}^{u, h}(G)$ is $(\mathscr{A}, \mathscr{B})$-superharmonic in G.

The following lemma can be shown in the same manner as [HKM, Lemma 8.4].
Lemma 2.3. Suppose that G is an open set with $G \Subset \Omega$ and $E \subset G$. Let h be a bounded $(\mathscr{A}, \mathscr{B})$-harmonic function in G, u be an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G with $u \geq h$ in G. Then $\hat{R}_{E}^{u, h}$ is $(\mathscr{A}, \mathscr{B})$-harmonic in $G \backslash \bar{E}, \hat{R}_{E}^{u, h}=R_{E}^{u, h}$ in $G \backslash \partial E$ and $\hat{R}_{E}^{u, h}=u$ in the interior of E.

Lemma 2.4. Suppose that G is open set with $G \Subset \Omega$ and $E \subset G$ is compact. Let h be a bounded $(\mathscr{A}, \mathscr{B})$-harmonic function in G and u be an $(\mathscr{A}, \mathscr{B})$ superharmonic function in G with $u \geq h$ in G. Then,

$$
\operatorname{cap}_{p, \mu}\left\{x \in G \mid \hat{R}_{E}^{u, h}(G)(x)<R_{E}^{u, h}(G)(x)\right\}=0
$$

Proof. Set $S=\left\{x \in G \mid \hat{R}_{E}^{u, h}(G)(x)<R_{E}^{u, h}(G)(x)\right\}$. By the above lemma, $S \subset \partial E$. Let $T=\left\{x \in \partial E \mid W_{p, \mu}(x, E)<\infty\right\}$. Since $\operatorname{cap}_{p, \mu} T=0$ (Proposition 1.3), the proof is complete if we show $S \subset T$.

Let U be an $(\mathscr{A}, \mathscr{B})$-regular set such that $E \subset U \Subset G$. Choose an increasing sequence of nonnegative functions $\psi_{i} \in C_{0}^{\infty}(U)$ such that $\psi_{i}+h \rightarrow u$ on E. Set $\varphi_{i}=\psi_{i}+h$. For each i there exists an $(\mathscr{A}, \mathscr{B})$-harmonic function s_{i} in $U \backslash E$ with $s_{i}-\varphi_{i} \in H_{0}^{1, p}(U \backslash E ; \mu)$. It follows from [O1, Theorem 5.3] that $\lim _{y \rightarrow x, y \in U \backslash E} s_{i}(y)=$ $\varphi_{i}(x)$ for $x \in \partial E \backslash T$. We shall show $R_{E}^{u, h}(G) \geq s_{i}$ in $U \backslash E$.

Choose $c>0$ such that $h+c>0$ on \bar{U}. For $\varepsilon>0$, let $v \in \Phi_{E}^{u+\varepsilon, h}(G)$. Then $v_{i}=\min \left(v, h+c+\sup _{U} \psi_{i}\right)$ is bounded and $(\mathscr{A}, \mathscr{B})$-superharmonic in U, and hence it is a supersolution of (E) in U by Proposition 2.2. Since $v \geq u+\varepsilon>\varphi_{i}$ on E and $\varphi_{i}=h$ on a complement of $\operatorname{supp} \psi_{i}, v_{i} \geq \varphi_{i}$ outside a compact set in $U \backslash E$. Thus $0 \geq \min \left(v_{i}-s_{i}, 0\right) \geq \min \left(v_{i}-\varphi_{i}, 0\right)+\min \left(\varphi_{i}-s_{i}, 0\right) \in H_{0}^{1, p}(U \backslash E ; \mu)$, so that $\min \left(v_{i}-s_{i}, 0\right) \in H_{0}^{1, p}(U \backslash E ; \mu)$. The comparison principle (Proposition 1.1) yields $v_{i} \geq s_{i}$ a.e. in $U \backslash E$. Since v_{i} is $(\mathscr{A}, \mathscr{B})$-superharmonic and s_{i} is $(\mathscr{A}, \mathscr{B})$-harmonic, by Corollary $2.2 v_{i} \geq s_{i}$ in $U \backslash E$. Hence $v \geq s_{i}$, so that $R_{E}^{u, h}(G)+\varepsilon \geq R_{E}^{u+\varepsilon, h}(G) \geq s_{i}$ in $U \backslash E$. Letting $\varepsilon \rightarrow 0$, we have $R_{E}^{u, h}(G) \geq s_{i}$ in $U \backslash E$.

Therefore, for $x \in \partial E \backslash T$,

$$
\begin{aligned}
\hat{R}_{E}^{u, h}(G)(x) & \geq \min \left(\lim _{y \rightarrow x, y \in U \backslash E} \inf _{E}^{u, h}(G)(y), u(x)\right) \\
& \geq \min \left(\lim _{y \rightarrow x, y \in U \backslash E} s_{i}(y), u(x)\right)=\min \left(\varphi_{i}(x), u(x)\right)=\varphi_{i}(x) .
\end{aligned}
$$

Letting $i \rightarrow \infty$, we have $\hat{R}_{E}^{u, h}(G)(x) \geq u(x) \geq R_{E}^{u, h}(G)(x)$ for $x \in \partial E \backslash T$. This implies $S \subset T$.

Now, by using the above lemmas, we can show the fundamental convergence theorem.

Theorem 2.2. (Fundamental convergence theorem) Let G be an open subset in Ω and let \mathscr{F} be a family of (\mathscr{A}, \mathscr{B})-superharmonic functions in G which is locally uniformly bounded below. Then the lower semicontinuous regularization \hat{s} of $s=$ $\inf \mathscr{F}$ is $(\mathscr{A}, \mathscr{B})$-superharmonic in G and $\hat{s}=s(p, \mu)$-q.e. in G.

Proof. By Proposition 2.4, we only show that $\hat{s}=s(p, \mu)$-q.e. in G. In the same manner as in the proof of [HKM, Theorem 8.2], Choquet's topological lemma ([HKM, Lemma 8.3]) yields that there exists a decreasing sequence $v_{i} \in \mathscr{F}$ with the limit v such that the lower semicontinuous regularizations \hat{s} and \hat{v} coincide. Let

$$
V_{j}=\left\{x \in G \left\lvert\, \hat{v}(x)+\frac{1}{j}<v(x)\right.\right\} .
$$

Since $s \leq v$, we have $\{x \in G \mid \hat{s}(x)<s(x)\} \subset \bigcup_{j=1}^{\infty} V_{j}$. Therefore, if we can show $\operatorname{cap}_{p, \mu} V_{j}=0$, the subadditivity of the capacity yields $\hat{s}=s(p, \mu)$-q.e. in G. Since V_{j} is a Borel set, it suffices to show that $\operatorname{cap}_{p, \mu} K=0$ for any compact set $K \subset V_{j}$.

Let $G^{\prime} \Subset G$ be an open neighborhood of K and h be a bounded $(\mathscr{A}, \mathscr{B})$-harmonic function in G^{\prime}. Since \mathscr{F} is locally uniformly bounded below, there exists a constant $c \geq 0$ such that $\hat{v}+c \geq h$. Letting $u=\hat{v}+c+\frac{1}{j}$, we have $v_{i}+c \in \Phi_{K}^{u, h}\left(G^{\prime}\right)$ for all
i. Therefore $R_{K}^{u, h}\left(G^{\prime}\right) \leq v_{i}+c$ in G^{\prime} for all i, so that $R_{K}^{u, h}\left(G^{\prime}\right) \leq v+c$ in G^{\prime}. Hence $\hat{R}_{K}^{u, h}\left(G^{\prime}\right) \leq \hat{v}+c$ in G^{\prime}. This implies

$$
\hat{R}_{K}^{u, h}\left(G^{\prime}\right)<\hat{v}+c+\frac{1}{j}=u=R_{K}^{u, h}\left(G^{\prime}\right)
$$

on K. Hence by Lemma 2.4 we have $\operatorname{cap}_{p, \mu} K=0$, so that the proof is complete.
The rest of this section is devoted to showing the integrability of $(\mathscr{A}, \mathscr{B})$ superharmonic functions. First, following the discussion in [MZ], in which the unweighted case, namely the case $w=1$, is treated, we will show a weak Harnack inequality for supersolutions of (E). Hereafter, c_{μ} denotes a constant depending only on those constants which appear in the conditions for w to be p-admissible (see [HKM, Chapter 1]).

Lemma 2.5. Suppose that G is an open set with $G \Subset \Omega$ and $B(x, 2 r) \subset G$. If u is a nonnegative supersolution of (E) in G, then, for any $\sigma, \tau \in(0,1)$, there exists a constant $c=c\left(N, p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, \gamma, \sigma, \tau, c_{\mu}\right)>0$ such that

$$
\left(\frac{1}{\mu(B(x, \sigma r))} \int_{B(x, \sigma r)} u^{\gamma} d \mu\right)^{1 / \gamma} \leq c\left(\operatorname{ess} \inf _{B(x, \tau r)} u+r\right)
$$

whenever $0<\gamma<\varkappa(p-1)$, where $\varkappa>1$ is the exponent in the Sobolev inequality.
Proof. Fix $r>0$ and let $\bar{u}=u+r$. Let $\beta>0$. For a ball $B \subset G$ and a nonnegative $\eta \in C_{0}^{\infty}(B)$, set $\varphi=\bar{u}^{-\beta} \eta^{p}$. Then $\varphi \in H_{0}^{1 . p}(B ; \mu)$ and $\varphi \geq 0$. Since u is a supersolution of (E) and

$$
\nabla \varphi=-\beta \bar{u}^{-\beta-1} \eta^{p} \nabla u+p \bar{u}^{-\beta} \eta^{p-1} \nabla \eta,
$$

we have

$$
\int_{B} \mathscr{A}(x, \nabla u) \cdot\left(-\beta \bar{u}^{-\beta-1} \eta^{p} \nabla u+p \bar{u}^{-\beta} \eta^{p-1} \nabla \eta\right) d x+\int_{B} \mathscr{B}(x, u) \bar{u}^{-\beta} \eta^{p} d x \geq 0 .
$$

From (A.2), (A.3) and (B.2) it follows that

$$
\begin{align*}
\alpha_{1} \beta \int_{B}|\nabla u|^{p} \bar{u}^{-\beta-1} \eta^{p} d \mu \leq & p \alpha_{2} \int_{B}|\nabla u|^{p-1}|\nabla \eta| \bar{u}^{-\beta} \eta^{p-1} d \mu \tag{2.1}\\
& +\alpha_{3}(G) \int_{B}\left(u^{p-1}+1\right) \bar{u}^{-\beta} \eta^{p} d \mu
\end{align*}
$$

By Young's inequality,

$$
|\nabla u|^{p-1}|\nabla \eta| \bar{u}^{-\beta} \eta^{p-1} \leq \frac{\alpha_{1}}{2 p \alpha_{2}} \beta|\nabla u|^{p} \bar{u}^{-\beta-1} \eta^{p}+c \beta^{1-p}|\nabla \eta|^{p} \bar{u}^{p-\beta-1}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}\right)>0$. Also, note that $u^{p-1}+1 \leq 2 \max \left(1, r^{1-p}\right) \bar{u}^{p-1}$. Hence, by (2.1)

$$
\begin{equation*}
\int_{B}|\nabla u|^{p} \bar{u}^{-\beta-1} \eta^{p} d \mu \leq c\left\{\beta^{-p} \int_{B}|\nabla \eta|^{p} \bar{u}^{p-\beta-1} d \mu+\beta^{-1} \int_{B} \bar{u}^{p-1-\beta} \eta^{p} d \mu\right\} \tag{2.2}
\end{equation*}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r\right)>0$.

Now let $s<p-1, s \neq 0$, and set $v=\bar{u}^{s / p}$. Then, $|\nabla v|^{p}=(|s| / p)^{p}|\nabla u|^{p} \bar{u}^{s-p}$. Hence, applying (2.2) with $\beta=p-1-s$ we have

$$
\begin{align*}
\int_{B}|\nabla v|^{p} \eta^{p} d \mu \leq & c\left\{|s|^{p}(p-1-s)^{-p} \int_{B}|\nabla \eta|^{p} v^{p} d \mu\right. \\
& \left.+|s|^{p}(p-1-s)^{-1} \int_{B} v^{p} \eta^{p} d \mu\right\} \tag{2.3}\\
\leq & c|s|^{p}\left(1+(p-1-s)^{-1}\right)^{p} \int_{B}\left(\eta^{p}+|\nabla \eta|^{p}\right) v^{p} d \mu
\end{align*}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r\right)>0$. The Sobolev inequality and (2.3) yield

$$
\begin{align*}
& \left(\frac{1}{\mu(B)} \int_{B}(\eta v)^{\varkappa \rho} d \mu\right)^{1 / \varkappa p} \leq c_{\mu} \rho(B)\left(\frac{1}{\mu(B)} \int_{B}|\nabla(\eta v)|^{p} d \mu\right)^{1 / p} \\
& \leq 2 c_{\mu} \rho(B)\left(\frac{1}{\mu(B)} \int_{B}\left(\eta^{p}|\nabla v|^{p}+|\nabla \eta|^{p} v^{p}\right) d \mu\right)^{1 / p} \tag{2.4}\\
& \left.\leq c \rho(B)(|s|+1)(1+(p-1-s))^{-1}\right)\left(\frac{1}{\mu(B)} \int_{B}\left(\eta^{p}+|\nabla \eta|^{p}\right) v^{p} d \mu\right)^{1 / p}
\end{align*}
$$

where $\rho(B)$ is the radius of B and $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}\right)>0$.
Now, we consider the ball $B(x, r)$ as in the lemma and let $B(h)=B(x, h)$ for $h>0$. Let $r_{0}=\min (\sigma, \tau) r$. We note that $\mu(B(h)) \leq c \mu\left(B\left(r_{0}\right)\right)$ with $c=$ $c\left(\sigma, \tau, c_{\mu}\right)>0$ for $r_{0} \leq h \leq r$ by the doubling property of μ. Let $r_{0} \leq h^{\prime}<h \leq r$ and $\eta \in C_{0}^{\infty}(B(h))$ be chosen so that $\eta=1$ on $B\left(h^{\prime}\right), 0 \leq \eta \leq 1$ in $B(h)$ and $|\nabla \eta| \leq 3\left(h-h^{\prime}\right)^{-1}$. Then, since $\eta \leq 1 \leq h\left(h-h^{\prime}\right)^{-1}$, (2.4) with $B=B(h)$ yields

$$
\begin{align*}
& \left(\frac{1}{\mu\left(B\left(h^{\prime}\right)\right)} \int_{B\left(h^{\prime}\right)} v^{\varkappa p} d \mu\right)^{1 / \varkappa p} \tag{2.5}\\
& \leq C_{1}\left(h-h^{\prime}\right)^{-1}(1+|s|)\left(1+(p-1-s)^{-1}\right)\left(\frac{1}{\mu(B(h))} \int_{B(h)} v^{p} d \mu\right)^{1 / p}
\end{align*}
$$

with $C_{1}=C_{1}\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}, \sigma, \tau\right)>0$.
If $s>0$, by (2.5) we have

$$
\begin{align*}
& \left(\frac{1}{\mu\left(B\left(h^{\prime}\right)\right)} \int_{B\left(h^{\prime}\right)} \bar{u}^{\varkappa s} d \mu\right)^{1 / \varkappa s} \tag{2.6}\\
& \leq\left[C_{1}\left(h-h^{\prime}\right)^{-1}(1+s)\left(1+(p-1-s)^{-1}\right)\right]^{p / s}\left(\frac{1}{\mu(B(h))} \int_{B(h)} \bar{u}^{s} d \mu\right)^{1 / s}
\end{align*}
$$

If $s<0$, since $(p-1-s)^{-1}<(p-1)^{-1}$, from (2.5) we obtain

$$
\begin{align*}
& \left(\frac{1}{\mu\left(B\left(h^{\prime}\right)\right)} \int_{B\left(h^{\prime}\right)} \bar{u}^{\varkappa s} d \mu\right)^{1 / \varkappa s} \tag{2.7}\\
& \geq\left[C_{1}\left(h-h^{\prime}\right)^{-1}(1-s)\right]^{p / s}\left(\frac{1}{\mu(B(h))} \int_{B(h)} \bar{u}^{s} d \mu\right)^{1 / s} .
\end{align*}
$$

Let $0<\gamma<\varkappa(p-1)$. Suppose $s_{0}=\varkappa^{-j} \gamma$ for some integer $j \geq 2$. Set $s_{i}=\varkappa^{i} s_{0}$ for $i=1,2, \ldots, j-1$. Then $0<s_{i} \leq \varkappa^{-1} \gamma<p-1$, and hence $p-1-s_{i} \geq p-1-\varkappa^{-1} \gamma$. Also, set $h_{i}=r\left\{\sigma+2^{-i}(1-\sigma)\right\}$ and $h_{i}^{\prime}=h_{i+1}$. Then $h_{i}-h_{i}^{\prime}=2^{-(i+1)} r(1-\sigma)$. Thus, by (2.6) we have

$$
\left(\frac{1}{\mu\left(B\left(h_{i+1}\right)\right)} \int_{B\left(h_{i+1}\right)} \bar{u}^{s_{i+1}} d \mu\right)^{1 / s_{i+1}} \leq\left(C_{2} 2^{p i}\right)^{1 / s_{i}}\left(\frac{1}{\mu\left(B\left(h_{i}\right)\right)} \int_{B\left(h_{i}\right)} \bar{u}^{s_{i}} d \mu\right)^{1 / s_{i}}
$$

with $C_{2}=C_{2}\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}, \sigma, \tau, \gamma\right)>0$. Thus, since $\gamma=\varkappa^{j} s_{0}=\varkappa s_{j-1}$, $\sigma r \leq h_{j}$ and $r=h_{0}$, we obtain by iteration

$$
\begin{align*}
& \left(\frac{1}{\mu(B(\sigma r))} \int_{B(\sigma r)} \bar{u}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \leq C_{2}^{\sum_{i=0}^{j-1} 1 / s_{i}} 2^{p \sum_{i=0}^{j-1} i / s_{i}}\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{s_{0}} d \mu\right)^{1 / s_{0}} \tag{2.8}\\
& \leq c\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{s_{0}} d \mu\right)^{1 / s_{0}}
\end{align*}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}, \gamma, \sigma, \tau, s_{0}\right)>0$. Since this holds for any $s_{0}=\varkappa^{-j} \gamma$, $j=2,3, \ldots$, by Hölder's inequality, the same inequality holds for any $s_{0}>0$.

Next, given $s_{0}>0$, set $s_{i}=-\varkappa^{i} s_{0}, h_{i}=r\left\{\tau+2^{-i}(1-\tau)\right\}$ and $h_{i}^{\prime}=h_{i+1}$. Then by (2.7) we have

$$
\begin{aligned}
& \left(\frac{1}{\mu\left(B\left(h_{i+1}\right)\right)} \int_{B\left(h_{i+1}\right)} \bar{u}^{s_{i+1}} d \mu\right)^{1 / s_{i+1}} \\
& \geq\left[C_{1}\left(h_{i}-h_{i+1}\right)^{-1}\left(1-s_{i}\right)\right]^{p / s_{i}}\left(\frac{1}{\mu\left(B\left(h_{i}\right)\right)} \int_{B\left(h_{i}\right)} \bar{u}^{s_{i}} d \mu\right)^{1 / s_{i}} .
\end{aligned}
$$

Since $1-s_{i}=1+\varkappa^{i} s_{0} \leq\left(1+s_{0}\right) \varkappa^{i}$, again by iteration we obtain

$$
\begin{aligned}
\left(\operatorname{ess} \sup _{B(\tau r)} \bar{u}^{-1}\right)^{-1} & =\lim _{i \rightarrow \infty}\left(\frac{1}{\mu\left(B\left(h_{i}\right)\right)} \int_{B\left(h_{i}\right)} \bar{u}^{s_{i}} d \mu\right)^{1 / s_{i}} \\
& \geq C_{3}^{\sum_{i=0}^{\infty} 1 / s_{i}}(2 \varkappa)^{p \sum_{i=0}^{\infty} i / s_{i}}\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{-s_{0}} d \mu\right)^{-1 / s_{0}}
\end{aligned}
$$

with $C_{3}=C_{3}\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}, \sigma, \tau, s_{0}\right)>0$, that is,

$$
\begin{equation*}
\text { ess } \inf _{B(\tau r)} \bar{u} \geq c\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{-s_{0}} d \mu\right)^{-1 / s_{0}} \tag{2.9}
\end{equation*}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}, \sigma, \tau, s_{0}\right)>0$.
Finally, we show

$$
\begin{equation*}
\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{s_{0}} d \mu\right)^{1 / s_{0}} \leq c\left(\frac{1}{\mu(B(r))} \int_{B(r)} \bar{u}^{-s_{0}} d \mu\right)^{-1 / s_{0}} \tag{2.10}
\end{equation*}
$$

for some $s_{0}>0$. Set $v=\log \bar{u}$ and let B be any ball in $B(x, r)$. Since $|\nabla v|^{p}=$ $|\nabla u|^{p} \bar{u}^{-p}$, by (2.2) with $\beta=p-1$ we have

$$
\begin{equation*}
\int_{2 B}|\nabla v|^{p} \eta^{p} d \mu \leq c \int_{2 B}\left(\eta^{p}+|\nabla \eta|^{p}\right) d \mu \tag{2.11}
\end{equation*}
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r\right)>0$ for nonnegative $\eta \in C_{0}^{\infty}(2 B)$. Choose η so that $\eta=1$ on $B, 0 \leq \eta \leq 1$ in $2 B$ and $|\nabla \eta| \leq 3 \rho(B)^{-1}$. Then, (2.11) yields

$$
\int_{B}|\nabla v|^{p} d \mu \leq c \rho(B)^{-p} \mu(B)
$$

with $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r\right)>0$. By using Hölder's inequality and Poincaré inequality, we have

$$
\frac{1}{\mu(B)} \int_{B}\left|v-v_{B}\right| d \mu \leq c_{\mu} \rho(B)\left(\frac{1}{\mu(B)} \int_{B}|\nabla v|^{p} d \mu\right)^{1 / p} \leq C_{4}
$$

with $C_{4}=C_{4}\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}\right)>0$, where $v_{B}=\frac{1}{\mu(B)} \int_{B} v d \mu$. Hence v satisfies the hypothesis of the John-Nirenberg lemma ([HKM, Appendix I]), so that there are positive constants s_{0} and c_{0} depending only on C_{4}, N and c_{μ} such that

$$
\left(\frac{1}{\mu(B(r))} \int_{B(r)} e^{s_{0} v} d \mu\right)\left(\frac{1}{\mu(B(r))} \int_{B(r)} e^{-s_{0} v} d \mu\right) \leq c_{0}
$$

Hence we obtain (2.10) with $s_{0}=s_{0}\left(N, p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), r, c_{\mu}\right)>0$ and $c=c\left(N, p, \alpha_{1}\right.$, $\left.\alpha_{2}, \alpha_{3}(G), r, c_{\mu}\right)>0$. Thus, by (2.8), (2.9) and (2.10) the proof is complete.

In general, an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G does not belong to $H_{\text {loc }}^{1, p}(G ; \mu)$. Hence, we give a definition of generalized gradient $D u$.

Suppose that G is an open subset in Ω. For a function u in an open set G such that $\min (u, k) \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$ for all $k>0$, we define

$$
D u=\lim _{k \rightarrow \infty} \nabla \min (u, k) .
$$

By Corollary 2.1, $D u$ is defined for any $(\mathscr{A}, \mathscr{B})$-superharmonic function u.
Now, using the above lemma, we can show the following integrability theorem for $(\mathscr{A}, \mathscr{B})$-superharmonic functions.

Theorem 2.3. Let G be an open subset in Ω. If u is an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G, then $u \in L_{\mathrm{loc}}^{\gamma}(G ; \mu)$ and $D u \in L_{\mathrm{loc}}^{q(p-1)}(G ; \mu)$ whenever $0<\gamma<$ $\varkappa(p-1)$ and

$$
\begin{equation*}
0<q<\frac{\varkappa p}{\varkappa(p-1)+1} . \tag{2.12}
\end{equation*}
$$

Proof. Let $G^{\prime} \Subset G$. Since u is bounded below on G^{\prime}, by adding a positive constant we may assume that u is nonnegative. By Lemma 2.1, there is a nonnegative bounded continuous $(\mathscr{A}, \mathscr{B})$-superharmonic function u_{0} in G^{\prime}. For $k>0$, let $u_{k}=\min \left(u, u_{0}+k\right)$. Then, u_{k} is a supersolution of (E) in G^{\prime}.

Let $B=B(x, r)$ be a ball with $2 B \subset G^{\prime}$. By the above lemma, we have

$$
\left(\int_{B} u_{k}^{\gamma} d \mu\right)^{1 / \gamma} \leq c\left(\underset{B}{\operatorname{ess} \inf } u_{k}+r\right) \leq c\left(\underset{B}{\left.\operatorname{ess} \inf _{B} u+r\right)<\infty}\right.
$$

whenever $0<\gamma<\varkappa(p-1)$ with a constant c independent of k. Hence, letting $k \rightarrow \infty$, we have $\int_{B} u^{\gamma} d \mu<\infty$.

Next, we show the integrability of $D u$. Let q satisfy (2.12). Since $h_{0} \geq 0$, $\min (u, k)=u=u_{k}$ on $\{u \leq k\}$, so that $\nabla \min (u, k)=\nabla u_{k}$ a.e. on $\{u \leq k\}$. Hence

$$
\begin{aligned}
\int_{B}|\nabla \min (u, k)|^{q(p-1)} d \mu & =\int_{B \cap\{u \leq k\}}|\nabla \min (u, k)|^{q(p-1)} d \mu \\
& =\int_{B \cap\{u \leq k\}}\left|\nabla u_{k}\right|^{q(p-1)} d \mu \leq \int_{B}\left|\nabla u_{k}\right|^{q(p-1)} d \mu .
\end{aligned}
$$

Set $\overline{u_{k}}=u_{k}+r$. If $\varepsilon>0$, by Hölder's inequality and (2.2) in Lemma 2.5 we have

$$
\begin{aligned}
& \int_{B}\left|\nabla u_{k}\right|^{q(p-1)} d \mu=\int_{B}\left|\nabla u_{k}\right|^{q(p-1)} \bar{u}_{k}^{-(1+\varepsilon)(p-1) q / p} \bar{u}_{k}^{(1+\varepsilon)(p-1) q / p} d \mu \\
& \leq\left(\int_{B}\left|\nabla u_{k}\right|^{p} \bar{u}_{k}^{-1-\varepsilon} d \mu\right)^{(p-1) q / p}\left(\int_{B} \bar{u}_{k}^{(1+\varepsilon)(p-1) q /\{p-q(p-1)\}} d \mu\right)^{\{p-(p-1) q\} / p} \\
& \leq c\left(\int_{2 B} \bar{u}_{k}^{p-1-\varepsilon} d \mu\right)^{(p-1) q / p}\left(\int_{B} \bar{u}_{k}^{(1+\varepsilon)(p-1) q /\{p-q(p-1)\}} d \mu\right)^{\{p-(p-1) q\} / p} \\
& \leq c\left(\int_{2 B}(u+r)^{p-1-\varepsilon} d \mu\right)^{(p-1) q / p}\left(\int_{B}(u+r)^{(1+\varepsilon)(p-1) q /\{p-q(p-1)\}} d \mu\right)^{\{p-(p-1) q\} / p}
\end{aligned}
$$

Now choose ε so that $0<\varepsilon<p-1$ and

$$
\frac{(1+\varepsilon)(p-1) q}{p-q(p-1)}<\varkappa(p-1) .
$$

Thus, the integrability of u implies the integrability of $D u$.

3. Existence of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions

In this section, we investigate relations between $(\mathscr{A}, \mathscr{B})$-superharmonic functions and solutions for the equation $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values.

We define

$$
L u=-\operatorname{div} \mathscr{A}(x, \nabla u(x))+\mathscr{B}(x, u(x)) .
$$

Let G be an open subset in Ω. If u is a supersolution of (E) in G, then $u \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$, and hence by Riesz representation theorem it is clear that $L u$ is a Radon measure in G. In general, an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G does not always belong to $H_{\mathrm{loc}}^{1, p}(G ; \mu)$ (see section 2). However, by the integrability of ($\left.\mathscr{A}, \mathscr{B}\right)$-superharmonic functions the following theorem holds.

Theorem 3.1. Let G be an open subset in Ω and u be an $(\mathscr{A}, \mathscr{B})$-superharmonic function u in G. Then there is a Radon measure ν on G such that

$$
\int_{G} \mathscr{A}(x, D u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x=\int_{G} \varphi d \nu
$$

for all $\varphi \in C_{0}^{\infty}(G)$.
Proof. Let $\varphi \in C_{0}^{\infty}(G)$ be nonnegative, U be an open set with $\operatorname{spt} \varphi \subset U \Subset G$ and u_{0} be a bounded nonnegative $(\mathscr{A}, \mathscr{B})$-superharmonic function in U (see Lemma 2.1). Set $u_{k}=\min \left(u, u_{0}+k\right)$. Then $\nabla u_{k} \rightarrow D u$ a.e. in U. Hence, by (A.1)

$$
\mathscr{A}\left(x, \nabla u_{k}\right) \cdot \nabla \varphi \rightarrow \mathscr{A}(x, D u) \cdot \nabla \varphi
$$

a.e. $x \in U$. Moreover, by Theorem 2.3, $|D u|^{p-1} \in L^{1}(U)$, so that,

$$
\left|\mathscr{A}\left(x, \nabla u_{k}\right) \cdot \nabla \varphi\right| \leq \alpha_{2}\left|\nabla u_{k}\right|^{p-1}|\nabla \varphi| \leq 2^{p-1} \alpha_{2}\left(|D u|^{p-1}+\left|\nabla h_{0}\right|^{p-1}\right)|\nabla \varphi| \in L^{1}(U) .
$$

Again, by Theorem 2.3, $|u|^{p-1} \in L^{1}(U)$, so that,

$$
\left|\mathscr{B}\left(x, u_{k}\right) \varphi\right| \leq \alpha_{3}(U)\left(\left|u_{k}\right|^{p-1}+1\right)|\varphi| \leq \alpha_{3}(U)\left(|u|^{p-1}+1\right)|\varphi| \in L^{1}(U)
$$

Hence, by Lebesgue's convergence theorem we have

$$
\begin{array}{rl}
\int_{G} & \mathscr{A}(x, D u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x \\
\quad=\lim _{k \rightarrow \infty}\left(\int_{U} \mathscr{A}\left(x, \nabla u_{k}\right) \cdot \nabla \varphi d x+\int_{U} \mathscr{B}\left(x, u_{k}\right) \varphi d x\right) \geq 0 .
\end{array}
$$

Therefore, from the Riesz representation theorem we obtain the claim of this theorem.

Remark 3.1. By the proof of Theorem 3.1 we can see: if u is an $(\mathscr{A}, \mathscr{B})$ superharmonic function, $\left\{u_{k}\right\}$ is the sequence of functions as in the proof of Theorem $3.1, \nu=L u$ and $\nu_{k}=L u_{k}$ in G, then $\nu_{k} \rightarrow \nu$ weakly in G, namely,

$$
\lim _{n \rightarrow \infty} \int_{G} \varphi d \nu_{n}=\int_{G} \varphi d \nu
$$

for all $\varphi \in C_{0}^{\infty}(G)$.

Next, we will show that given a nonnegative Radon measure ν, there is an $(\mathscr{A}, \mathscr{B})$-superharmonic function which satisfies the equation $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values. We use the notation X^{*} as the dual space of X.

Let G be an open set with $G \Subset \Omega$. We can regard L as an operator $H_{0}^{1, p}(G ; \mu) \rightarrow$ $\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ by

$$
(L u, v)=\int_{G} \mathscr{A}(x, \nabla u) \cdot \nabla v d x+\int_{G} \mathscr{B}(x, u) v d x .
$$

In fact, by (A.3) and (B.2),

$$
\begin{aligned}
\left|\int_{G} \mathscr{A}(x, \nabla u) \cdot \nabla v d x\right| & \leq \alpha_{2}\left(\int_{G}|\nabla u|^{p} d \mu\right)^{(p-1) / p}\left(\int_{G}|\nabla v|^{p} d \mu\right)^{1 / p} \\
\left|\int_{G} \mathscr{B}(x, u) v d x\right| & \leq 2 \alpha_{3}(G)\left(\int_{G}(|u|+1)^{p} d \mu\right)^{(p-1) / p}\left(\int_{G}|v|^{p} d \mu\right)^{1 / p}
\end{aligned}
$$

so that, L is a bounded operator. Moreover, in the same manner as [O1, Lemma 3.3], we can show that L is demicontinuous and coercive. Thus, if $\nu \in\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$, then it follows from [M, Lemma 2.6] that there exists a solution $u \in H_{0}^{1, p}(G ; \mu)$ which satisfies $\left(\mathrm{E}_{\nu}\right)$. Then, u is a supersolution of (E), so that u can be chosen to be $(\mathscr{A}, \mathscr{B})$-superharmonic in G by Proposition 2.1. Further, by Lemma 3.1 below, u is unique. Namely, the following theorem holds.

Theorem 3.2. Suppose that G is an open set with $G \Subset \Omega$ and $\nu \in\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ is a Radon measure in G. Then there is a unique $(\mathscr{A}, \mathscr{B})$-superharmonic function u in G which satisfies $\left(E_{\nu}\right)$ and belongs to $H_{0}^{1, p}(G ; \mu)$.

Lemma 3.1. Suppose that G is an open set with $G \Subset \Omega$ and $u_{1}, u_{2} \in H_{0}^{1, p}(G ; \mu)$ are $(\mathscr{A}, \mathscr{B})$-superharmonic functions in G with $L u_{i}=\nu_{i}$ for $i=1$, 2. If $\nu_{1} \leq \nu_{2}$, then $u_{1} \leq u_{2}$ in G.

Proof. Let $\eta=\min \left(u_{2}-u_{1}, 0\right)$. Since $\eta \in H_{0}^{1, p}(G ; \mu)$ and $\eta \leq 0$, we have by (A.4) and (B.3)

$$
\begin{aligned}
0 \geq & \int_{G} \eta d \nu_{2}-\int_{G} \eta d \nu_{1} \\
= & \int_{G} \mathscr{A}\left(x, \nabla u_{2}\right) \cdot \nabla \eta d x+\int_{G} \mathscr{B}\left(x, u_{2}\right) \eta d x \\
& -\left(\int_{G} \mathscr{A}\left(x, \nabla u_{1}\right) \cdot \nabla \eta d x+\int_{G} \mathscr{B}\left(x, u_{1}\right) \eta d x\right) \\
= & \int_{\left\{u_{1}>u_{2}\right\}}\left(\mathscr{A}\left(x, \nabla u_{2}\right)-\mathscr{A}\left(x, \nabla u_{1}\right)\right) \cdot \nabla \eta d x \\
& +\int_{\left\{u_{1}>u_{2}\right\}}\left(\mathscr{B}\left(x, u_{2}\right)-\mathscr{B}\left(x, u_{1}\right)\right) \eta d x \geq 0 .
\end{aligned}
$$

Hence,

$$
\int_{\left\{u_{1}>u_{2}\right\}}\left(\mathscr{A}\left(x, \nabla u_{2}\right)-\mathscr{A}\left(x, \nabla u_{1}\right)\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) d x=0 .
$$

Again from (A.4), we obtain $\nabla u_{1}-\nabla u_{2}=0$ a.e. in $\left\{u_{1}>u_{2}\right\}$, and hence $\nabla \eta=0$ a.e. in G. Since $\eta \in H_{0}^{1, p}(G ; \mu)$, we have $\eta=0$ a.e. in G. Therefore, we conclude that $u_{1} \leq u_{2}$ a.e. in G. By Corollary 2.2 we see that $u_{1} \leq u_{2}$ in G. Hence the proof is complete.

In order to show the existence of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions of $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values for general finite Radon measures, we prepare some lemmas.

Lemma 3.2. ([M, Lemma 2.12]) If G is a bounded open set in Ω and ν is a finite Radon measure in G, then there is a sequence of Radon measures $\nu_{n} \in\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ such that $\nu_{n}(G) \leq \nu(G)$ for all $n=1,2, \ldots$ and $\nu_{n} \rightarrow \nu$ weakly in G.

Lemma 3.3. ([M, Theorem 2.14]) Suppose that G is an open set with $G \Subset \Omega$. If $\left\{u_{n}\right\}$ is a bounded sequence in $H_{0}^{1, p}(G ; \mu)$, then there is a subsequence $\left\{u_{n_{i}}\right\}$ and a function $u \in H_{0}^{1, p}(G ; \mu)$ such that $u_{n_{i}} \rightarrow u$ in $L^{s}(G ; \mu)$ for all $1 \leq s<\varkappa p$.

Suppose that G is an open set in Ω. A function u is said to be $(\mathscr{A}, \mathscr{B})$ hyperharmonic in G if it is lower semicontinuous, and for each open set $U \Subset G$ and for $h \in C(\bar{U})$ which is $(\mathscr{A}, \mathscr{B})$-harmonic in $U, u \geq h$ on ∂U implies $u \geq h$ in U. Note that $D u$ is defined for every $(\mathscr{A}, \mathscr{B})$-hyperharmonic function u in G, since $\min (u, k) \in H_{\text {loc }}^{1, p}(G ; \mu)$ for any $k>0$ by Corollary 2.1.

Lemma 3.4. Suppose that G is an open set in Ω. If $\left\{u_{n}\right\}$ is a sequence of $(\mathscr{A}, \mathscr{B})$-superharmonic functions in G which is locally uniformly bounded below, then there is a subsequence $\left\{u_{n_{i}}\right\}$ and an $(\mathscr{A}, \mathscr{B})$-hyperharmonic function u in G such that $u_{n_{i}} \rightarrow u$ a.e. in G and $D u_{n_{i}} \rightarrow D u$ a.e. in the set $\{u<\infty\}$.

Proof. First, let $U \Subset G, U \Subset G^{\prime} \Subset G$ and we assume that there is a constant $M \geq 0$ such that $u_{n} \leq M$ in G^{\prime} for all n. Then, by Proposition $2.2, u_{n} \in H_{\mathrm{loc}}^{1, p}\left(G^{\prime} ; \mu\right)$ is a supersolution of (E) in G^{\prime}. Let $U \Subset U^{\prime} \Subset G^{\prime}$. Choose $\eta \in C_{0}^{\infty}\left(G^{\prime}\right)$ with $0 \leq \eta \leq 1$ in $G^{\prime}, \eta=1$ in U^{\prime}. Then since $\left(M-u_{n}\right) \eta^{p} \in H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$ and $\left(M-u_{n}\right) \eta^{p} \geq 0$ we have

$$
\int_{G^{\prime}} \mathscr{A}\left(x, \nabla u_{n}\right) \cdot \nabla\left[\left(M-u_{n}\right) \eta^{p}\right] d x+\int_{G^{\prime}} \mathscr{B}\left(x, u_{n}\right)\left(M-u_{n}\right) \eta^{p} d x \geq 0 .
$$

Hence,

$$
\begin{aligned}
\int_{G^{\prime}}\left[\mathscr{A}\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}\right] \eta^{p} d x \leq & p \int_{G^{\prime}}\left[\mathscr{A}\left(x, \nabla u_{n}\right) \cdot \nabla \eta\right]\left(M-u_{n}\right) \eta^{p-1} d x \\
& +\int_{G^{\prime}} \mathscr{B}\left(x, u_{n}\right)\left(M-u_{n}\right) \eta^{p} d x
\end{aligned}
$$

We may assume that $u_{n} \geq-m$ for any n in $G^{\prime}(m \geq 0)$. From the structure condition and the inequality $\mathscr{B}\left(x, u_{n}\right)\left(M-u_{n}\right) \leq|\mathscr{B}(x, M)|(M+m)$ we obtain

$$
\begin{aligned}
\alpha_{1} \int_{G^{\prime}}\left|\nabla u_{n}\right|^{p} \eta^{p} d \mu \leq & p \alpha_{2} \int_{G^{\prime}}\left|\nabla u_{n}\right|^{p-1}|\nabla \eta|(M+m) \eta^{p-1} d \mu \\
& +\alpha_{3}\left(G^{\prime}\right) \int_{G^{\prime}}\left(M^{p-1}+1\right)(M+m) d \mu \\
\leq & p \alpha_{2}(M+m)\left(\int_{G^{\prime}}\left|\nabla u_{n}\right|^{p} \eta^{p} d \mu\right)^{(p-1) / p}\left(\int_{G^{\prime}}|\nabla \eta|^{p} d \mu\right)^{1 / p} \\
& +\alpha_{3}\left(G^{\prime}\right)\left(M^{p-1}+1\right)(M+m) \mu\left(G^{\prime}\right) .
\end{aligned}
$$

An application of Young's inequality yields that $X \leq A X^{(p-1) / p}+C$ implies $X \leq$ $A^{p}+p C$ for $X \geq 0, A \geq 0$ and $C \geq 0$. Therefore, $\left\{\int_{G^{\prime}}\left|\nabla u_{n}\right|^{p} \eta^{p} d \mu\right\}$ is bounded. Moreover, since $\left\{\int_{G^{\prime}}\left|u_{n}\right|^{p}|\nabla \eta|^{p} d \mu\right\}$ is bounded, $\left\{\eta u_{n}\right\}$ is bounded in $H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$. By Lemma 3.3, there is a subsequence $\left\{\eta u_{n_{i}}\right\}$ and a function $u_{U^{\prime}} \in H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$ such that $\eta u_{n_{i}} \rightarrow u_{U^{\prime}}$ in $L^{s}\left(G^{\prime} ; \mu\right)$ for all $1 \leq s<\varkappa p$, especially $u_{n_{i}} \rightarrow u_{U^{\prime}}$ a.e. in U^{\prime}. It follows from [HKM, Theorem 1.32] that $\nabla u_{n_{i}} \rightarrow \nabla u_{U^{\prime}}$ weakly in $L^{p}\left(U^{\prime} ; \mu\right)$. We write this subsequence $u_{n_{i}}$ by u_{n}.

Now we will show that $u_{U^{\prime}}$ has an $(\mathscr{A}, \mathscr{B})$-superharmonic representative. Set $v_{i}=\inf _{n \geq i} u_{n}$ and $\hat{v}_{i}(x)=\lim \inf _{y \rightarrow x} v_{i}(x)(i=1,2, \ldots)$. Then, the fundamental convergence theorem yields that \hat{v}_{i} is $(\mathscr{A}, \mathscr{B})$-superharmonic in U^{\prime} and $\hat{v}_{i}=v_{i}$ (p, μ)-q.e., and hence a.e. in U^{\prime}. Moreover, since $\left\{\hat{v}_{i}\right\}$ is an increasing sequence of bounded $(\mathscr{A}, \mathscr{B})$-superharmonic functions, $\hat{v}=\lim _{i \rightarrow \infty} \hat{v}_{i}$ is $(\mathscr{A}, \mathscr{B})$-superharmonic in U^{\prime} ([MO1, Proposition 2.2]). Moreover, we have

$$
u_{U^{\prime}}(x)=\lim _{n \rightarrow \infty} u_{n}(x)=\lim _{i \rightarrow \infty} v_{i}(x)=\lim _{i \rightarrow \infty} \hat{v}_{i}(x)=\hat{v}(x)
$$

for a.e. $x \in U^{\prime}$. Thus $u_{U^{\prime}}$ has an $(\mathscr{A}, \mathscr{B})$-superharmonic representative.
Next, we will show that $\nabla u_{n} \rightarrow \nabla u_{U^{\prime}}$ a.e. in U. Fix $\varepsilon>0$. Let

$$
\begin{aligned}
& E_{n, \varepsilon}:=\left\{x \in U \mid\left(\mathscr{A}\left(x, \nabla u_{n}\right)-\mathscr{A}\left(x, \nabla u_{U^{\prime}}\right)\right) \cdot\left(\nabla u_{n}-\nabla u_{U^{\prime}}\right) \geq \varepsilon\right\}, \\
& E_{n, \varepsilon}^{1}:=\left\{x \in E_{n, \varepsilon}| | u_{n}-u_{U^{\prime}} \mid \geq \varepsilon^{2}\right\} \quad \text { and } \quad E_{n, \varepsilon}^{2}:=E_{n, \varepsilon} \backslash E_{n, \varepsilon}^{1} .
\end{aligned}
$$

Since $u_{n} \rightarrow u_{U^{\prime}}$ in $L^{p}(U ; \mu),\left|E_{n, \varepsilon}^{1}\right| \rightarrow 0$ as $n \rightarrow \infty$. On the other hand,

$$
\left|E_{n, \varepsilon}^{2}\right| \leq \frac{1}{\varepsilon} \int_{E_{n, \varepsilon}^{2}}\left(\mathscr{A}\left(x, \nabla u_{n}\right)-\mathscr{A}\left(x, \nabla u_{U^{\prime}}\right)\right) \cdot\left(\nabla u_{n}-\nabla u_{U^{\prime}}\right) d x .
$$

Let $\eta \in C_{0}^{\infty}\left(U^{\prime}\right)$ with $0 \leq \eta \leq 1$ in U^{\prime} and $\eta=1$ in U, and $v_{n}=\min \left\{\max \left(u_{n}-u_{U^{\prime}}+\right.\right.$ $\left.\left.\varepsilon^{2}, 0\right), 2 \varepsilon^{2}\right\}$. Then since $u_{U^{\prime}}$ is a supersolution of (E) in U^{\prime} and $\eta v_{n} \in H_{0}^{1, p}\left(U^{\prime} ; \mu\right)$ is
nonnegative,

$$
\begin{aligned}
0 \leq & \int_{U^{\prime}} \mathscr{A}\left(x, \nabla u_{U^{\prime}}\right) \cdot \nabla\left(\eta v_{n}\right) d x+\int_{U^{\prime}} \mathscr{B}\left(x, u_{U^{\prime}}\right) \eta v_{n} d x \\
\leq & \int_{U^{\prime}} \mathscr{A}\left(x, \nabla u_{U^{\prime}}\right) \cdot\left(v_{n} \nabla \eta\right) d x+\int_{U^{\prime} \cap\left\{\left|u_{n}-u\right|<\varepsilon^{2}\right\}} \mathscr{A}\left(x, \nabla u_{U^{\prime}}\right) \cdot\left(\eta \nabla\left(u_{n}-u_{U^{\prime}}\right)\right) d x \\
& +2 \varepsilon^{2} \int_{U^{\prime}}\left|\mathscr{B}\left(x, u_{U^{\prime}}\right)\right| \eta d x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{U^{\prime} \cap\left\{\left|u_{n}-u_{U^{\prime}}\right|<\varepsilon^{2}\right\}} \mathscr{A}\left(x, \nabla u_{U^{\prime}}\right) \cdot\left(\eta \nabla\left(u_{U^{\prime}}-u_{n}\right)\right) d x \\
& \leq \int_{U^{\prime}} \mathscr{A}\left(x, \nabla u_{U^{\prime}}\right) \cdot\left(v_{n} \nabla \eta\right) d x+2 \varepsilon^{2} \int_{U^{\prime}}\left|\mathscr{B}\left(x, u_{U^{\prime}}\right)\right| d x \\
& \leq \alpha_{2} \varepsilon^{2} \int_{U^{\prime}}\left|\nabla u_{U^{\prime}}\right|^{p-1}|\nabla \eta| d \mu+2 \varepsilon^{2} \alpha_{3}\left(G^{\prime}\right) \int_{U^{\prime}}\left(\left|u_{U^{\prime}}\right|^{p-1}+1\right) \mid d \mu \\
& \leq c \varepsilon^{2}\left(\int_{U^{\prime}}\left|\nabla u_{U^{\prime}}\right|^{p} d \mu\right)^{(p-1) / p}\left(\int_{U^{\prime}}|\nabla \eta|^{p} d \mu\right)^{1 / p}+c \varepsilon^{2} \leq c \varepsilon^{2}
\end{aligned}
$$

with $c>0$ independent of ε and n. Similarly, considering $\tilde{v_{n}}=\min \left\{\max \left(u_{U^{\prime}}-u_{n}+\right.\right.$ $\left.\left.\varepsilon^{2}, 0\right), 2 \varepsilon^{2}\right\}$, we have

$$
\int_{U^{\prime} \cap\left\{\left|u_{n}-u_{U^{\prime}}\right|<\varepsilon^{2}\right\}} \mathscr{A}\left(x, \nabla u_{n}\right) \cdot\left(\eta \nabla\left(u_{n}-u_{U^{\prime}}\right)\right) d x \leq c \varepsilon^{2}
$$

with the same c. Thus

$$
\left|E_{n, \varepsilon}^{2}\right| \leq \frac{1}{\varepsilon} \int_{E_{n, \varepsilon}^{2}}\left(\mathscr{A}\left(x, \nabla u_{n}\right)-\mathscr{A}\left(x, \nabla u_{U^{\prime}}\right)\right) \cdot\left(\nabla u_{n}-\nabla u_{U^{\prime}}\right) d x \leq 2 c \varepsilon,
$$

so that, for $n \geq n_{\varepsilon}$,

$$
\begin{equation*}
\left|E_{n, \varepsilon}\right|=\left|E_{n, \varepsilon}^{1}\right|+\left|E_{n, \varepsilon}^{2}\right| \leq(c+1) \varepsilon, \tag{3.1}
\end{equation*}
$$

where c does not depend on n and ε. To obtain the claim that $\nabla u_{n} \rightarrow \nabla u_{U^{\prime}}$ a.e. in U, we will show that for any $\lambda>0$

$$
\begin{equation*}
\left|\left\{x \in U\left|\left|\nabla u_{n}-\nabla u_{U^{\prime}}\right| \geq \lambda\right\} \mid \rightarrow 0\right.\right. \tag{3.2}
\end{equation*}
$$

as $n \rightarrow \infty$. To the contrary, we assume that there exist $\lambda>0, a>0$ and the subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
\left|\left\{x \in U\left|\left|\nabla u_{n_{i}}-\nabla u_{U^{\prime}}\right| \geq \lambda\right\} \mid \geq a\right.\right. \tag{3.3}
\end{equation*}
$$

for any i. Since $u_{U^{\prime}} \in H^{1, p}(U ; \mu)$, we have $\left|\nabla u_{U^{\prime}}\right|<\infty$ a.e. in U, so that there exists a constant $R>0$ such that

$$
\begin{equation*}
\left|\left\{x \in U\left|\left|\nabla u_{U^{\prime}}\right|>R\right\} \left\lvert\, \leq \frac{a}{3}\right.\right.\right. \tag{3.4}
\end{equation*}
$$

Set $\mathscr{A}_{x}(\xi, \eta)=(\mathscr{A}(x, \xi)-\mathscr{A}(x, \eta)) \cdot(\xi-\eta) \quad\left(\xi, \eta \in \mathbf{R}^{N}\right)$. If $|\eta| \leq R$, then

$$
\begin{aligned}
\mathscr{A}_{x}(\xi, \eta) & =\mathscr{A}(x, \xi) \cdot \xi-\mathscr{A}(x, \xi) \cdot \eta-\mathscr{A}(x, \eta) \cdot \xi+\mathscr{A}(x, \eta) \cdot \eta \\
& \geq w(x)\left(-\alpha_{2}|\xi|^{p-1}|\eta|-\alpha_{2}|\xi||\eta|^{p-1}+\alpha_{1}|\xi|^{p}\right) \\
& \geq w(x)\left(-\alpha_{2}|\xi|^{p-1} R-\alpha_{2}|\xi| R^{p-1}+\alpha_{1}|\xi|^{p}\right) .
\end{aligned}
$$

There exists a constant $R^{\prime}>0$ such that

$$
-\alpha_{2}|\xi|^{p-1} R-\alpha_{2}|\xi| R^{p-1}+\alpha_{1}|\xi|^{p} \geq 1
$$

if $|\xi| \geq R^{\prime}$. It follows that $\mathscr{A}_{x}(\xi, \eta) \geq w(x)$ for a.e. $x \in U$ if $|\xi| \geq R^{\prime}$ and $|\eta| \leq R$. Since $\mathscr{A}_{x}(\xi, \eta)$ is continuous in (ξ, η) and $\mathscr{A}_{x}(\xi, \eta)>0$ for a.e. $x \in U$ whenever $\xi, \eta \in \mathbf{R}^{N}, \xi \neq \eta$, we have

$$
\delta(x):=\inf \left\{\mathscr{A}_{x}(\xi, \eta)| | \xi\left|\leq R^{\prime},|\eta| \leq R \text { and }\right| \xi-\eta \mid \geq \lambda\right\}>0
$$

for a.e. $x \in U$. Therefore, if $|\eta| \leq R$ and $|\xi-\eta| \geq \lambda$, then

$$
\begin{equation*}
\mathscr{A}_{x}(\xi, \eta) \geq \min (w(x), \delta(x))>0 \tag{3.5}
\end{equation*}
$$

for a.e. $x \in U$. Setting

$$
F_{n_{i}}=\left\{x \in U| | \nabla u_{n_{i}}-\nabla u_{U^{\prime}} \mid \geq \lambda \text { and }\left|\nabla u_{U^{\prime}}\right| \leq R\right\}
$$

we have by (3.3) and (3.4)

$$
\begin{equation*}
\left|F_{n_{i}}\right| \geq a-\frac{a}{3}=\frac{2 a}{3} \tag{3.6}
\end{equation*}
$$

Since $\min (w(x), \delta(x))>0$ for a.e. $x \in U$, there exists $\alpha>0$ such that

$$
\begin{equation*}
|\{x \in U \mid \min (w(x), \delta(x))<\alpha\}| \leq \frac{a}{3} \tag{3.7}
\end{equation*}
$$

Then from (3.5), (3.6) and (3.7) we obtain

$$
\begin{aligned}
\left|\left\{x \in U \mid \mathscr{A}_{x}\left(\nabla u_{n_{i}}, \nabla u_{n}\right) \geq \alpha\right\}\right| & =\left|E_{n_{i}, \alpha}\right| \geq\left|E_{n_{i}, \alpha} \cap F_{n_{i}}\right| \\
& =\left|F_{n_{i}}\right|-\left|F_{n_{i}} \cap\left\{x \in U \mid \mathscr{A}_{x}\left(\nabla u_{n_{i}}, \nabla u_{n}\right)<\alpha\right\}\right| \\
& \geq\left|F_{n_{i}}\right|-|\{x \in U \mid \min (w(x), \delta(x))<\alpha\}| \\
& \geq \frac{2 a}{3}-\frac{a}{3}=\frac{a}{3} .
\end{aligned}
$$

Choosing $\varepsilon>0$ such that $\varepsilon<\min \left(\frac{a}{3(c+1)}, \alpha\right)$ with c in (3.1), we have

$$
(c+1) \varepsilon \geq\left|E_{n_{i}, \varepsilon}\right| \geq\left|E_{n_{i}, \alpha}\right| \geq \frac{a}{3} \geq(c+1) \varepsilon
$$

which is a contradiction. Consequently, (3.2) is established.
Secondly, we relax the assumption that $\left\{u_{n}\right\}$ is uniformly bounded. Let U be an open set with $U \Subset G, U^{\prime}$ be a regular set with $U \Subset U^{\prime} \Subset G$ and h_{0} be the continuous solution of (E) in U^{\prime} with boundary values 0 on ∂U^{\prime}. By the above
argument there exist a subsequence $\left\{u_{n}^{(1)}\right\}$ of $\left\{u_{n}\right\}$ and an $(\mathscr{A}, \mathscr{B})$-superharmonic function $u^{(1)} \in H^{1, p}(U ; \mu)$ such that

$$
\min \left(u_{n}^{(1)}, h_{0}+1\right) \rightarrow u^{(1)} \text { and } \nabla \min \left(u_{n}^{(1)}, h_{0}+1\right) \rightarrow \nabla u^{(1)}
$$

a.e. in U. Inductively we define a subsequence $\left\{u_{n}^{(k)}\right\}$ of $\left\{u_{n}^{(k-1)}\right\}$ and an $(\mathscr{A}, \mathscr{B})$ superharmonic function $u^{(k)} \in H^{1, p}(U ; \mu)$ such that

$$
\min \left(u_{n}^{(k)}, h_{0}+k\right) \rightarrow u^{(k)} \text { and } \nabla \min \left(u_{n}^{(k)}, h_{0}+k\right) \rightarrow \nabla u^{(k)}
$$

a.e. in U. Then $\left\{u^{(k)}\right\}$ is a increasing sequence, so that $u_{U}:=\lim _{k \rightarrow \infty} u^{(k)}$ is $(\mathscr{A}, \mathscr{B})$ hyperharmonic in U ([MO1, Proposition 2.2]). Since $u^{(k)}=\min \left(u_{U}, h_{0}+k\right)$, for any $k=1,2, \ldots$ it follows from the diagonal method that
$\min \left(u_{n}^{(n)}, h_{0}+k\right) \rightarrow \min \left(u_{U}, h_{0}+k\right)$ and $\nabla \min \left(u_{n}^{(n)}, h_{0}+k\right) \rightarrow \nabla \min \left(u_{U}, h_{0}+k\right)$
a.e. in U. Since $\min \left(u_{n}^{(n)}, h_{0}+k\right) \rightarrow u_{n}^{(n)} \quad(k \rightarrow \infty)$, we have $u_{n}^{(n)} \rightarrow u_{U}$ a.e. in U and $D u_{n}^{(n)} \rightarrow D u_{U}$ a.e. in $\left\{x \in U \mid u_{U}(x)<\infty\right\}$.

Finally, we show the assertion in G. Let U_{k} be an open set such that $U_{k} \Subset$ $U_{k+1} \Subset G$ and $G=\cup_{k} U_{k}$. There exist a subsequence $\left\{u_{1, n}\right\}$ of $\left\{u_{n}\right\}$ and an $(\mathscr{A}, \mathscr{B})$ hyperharmonic function $u_{U_{1}}$ in U_{1} such that $u_{1, n} \rightarrow u_{U_{1}}$ a.e. in U_{1} and $D u_{1, n} \rightarrow D u_{U_{1}}$ a.e. in $\left\{x \in U_{1} \mid u_{U_{1}}(x)<\infty\right\}$. Inductively we define a subsequence $\left\{u_{k+1, n}\right\}$ of $\left\{u_{k, n}\right\}$ and an $(\mathscr{A}, \mathscr{B})$-hyperharmonic function $u_{U_{k+1}}$ in U_{k+1} such that $u_{k+1, n} \rightarrow u_{U_{k+1}}$ a.e. in U_{k+1} and $D u_{k+1, n} \rightarrow D u_{U_{k+1}}$ a.e. in $\left\{x \in U_{k+1} \mid u_{U_{k+1}}(x)<\infty\right\}$. Thus $u_{k+1, n}=$ $u_{k, n}$ a.e. in U_{k+1}, and hence Corollary 2.2 yields $u_{k+1, n}=u_{k, n}$ in U_{k+1}. Setting $u=u_{U_{k}}$ in U_{k}, u is $(\mathscr{A}, \mathscr{B})$-hyperharmonic in G. Again, it follows from the diagonal method that $u_{k, k} \rightarrow u$ a.e. in G and $D u_{k, k} \rightarrow D u$ a.e. in $\{x \in G \mid u(x)<\infty\}$. Hence the proof is complete.

Now we will show the existence of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions of $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values.

Theorem 3.3. Suppose that G is an open set with $G \Subset \Omega$ and ν is a finite Radon measure in G. Then there is an $(\mathscr{A}, \mathscr{B})$-superharmonic function u in G satisfying $\left(E_{\nu}\right)$ with $\min (u, k) \in H_{0}^{1, p}(G ; \mu)$ for all $k>0$.

Proof. By Lemma 3.2, there is a sequence of Radon measures $\nu_{n} \in\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ such that $\nu_{n}(G) \leq \nu(G)$ for all $n=1,2, \ldots$ and $\nu_{n} \rightarrow \nu$ weakly in G. Let G^{\prime} be a regular set such that $G \Subset G^{\prime} \Subset \Omega$. Then by Proposition 1.2 there is a bounded $(\mathscr{A}, \mathscr{B})$-harmonic function h_{0} in G^{\prime} with $h_{0} \in H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$ and by Theorem 3.2 there is a unique $(\mathscr{A}, \mathscr{B})$-superharmonic function u_{n} in G satisfying ($\mathrm{E}_{\nu_{n}}$) with $u_{n} \in H_{0}^{1, p}(G ; \mu)$. Since h_{0} is bounded, there exists $c_{0} \geq 0$ such that $h_{0}-c_{0} \leq 0$ in \bar{G}. Therefore, comparison principle yields $u_{n} \geq h_{0}-c_{0}$ in G for all n. By Lemma 3.4 there is a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ and an $(\mathscr{A}, \mathscr{B})$-hyperharmonic function u in G such that $u_{n_{i}} \rightarrow u$ a.e. in G and $\nabla u_{n_{i}} \rightarrow D u$ a.e. in the set $\{u<\infty\}$. On the other hand, since $\min \left(u_{n}, k\right) \in H_{0}^{1, p}(G ; \mu)$ and $0 \leq\left(\mathscr{B}\left(x, u_{n}\right)-\mathscr{B}(x, 0)\right) \min \left(u_{n}, k\right)$,
we have

$$
\begin{align*}
& \int_{G}\left|\nabla \min \left(u_{n}, k\right)\right|^{p} d \mu \leq \alpha^{-1} \int_{G} \mathscr{A}\left(x, \nabla u_{n}\right) \cdot \nabla \min \left(u_{n}, k\right) d x \\
& \leq \alpha^{-1} \int_{G} \mathscr{A}\left(x, \nabla u_{n}\right) \cdot \nabla \min \left(u_{n}, k\right) d x \\
& \quad+\alpha^{-1} \int_{G}\left(\mathscr{B}\left(x, u_{n}\right)-\mathscr{B}(x, 0)\right) \min \left(u_{n}, k\right) d x \tag{3.8}\\
& =\alpha^{-1} \int_{G} \min \left(u_{n}, k\right) d \nu_{n}-\alpha^{-1} \int_{G} \mathscr{B}(x, 0) \min \left(u_{n}, k\right) d x \\
& \leq \alpha^{-1} \nu(G) k+\alpha^{-1} \alpha_{3}(G) \mu(G) k
\end{align*}
$$

for $k=1,2, \ldots$ Hence, in the same manner as in the proof of [HKM, Lemma 7.43], for fixed $0<s<\varkappa(p-1)$, there exists $c>0$ such that

$$
\int_{G} \max \left(u_{n}, 0\right)^{s} d \mu<c
$$

where c does not depend on n. On the other hand, $\min \left(u_{n}, 0\right) \geq h_{0}-c_{0}$ in G for all n. Therefore

$$
\begin{equation*}
\int_{G}|u|^{s} d \mu<\infty \tag{3.9}
\end{equation*}
$$

so that $u<\infty$ a.e. in G. Hence u is $(\mathscr{A}, \mathscr{B})$-superharmonic in G. Moreover, since $\left\{\min \left(u_{n}, k\right)\right\}$ is bounded in $H_{0}^{1, p}(G ; \mu)$ and $\min \left(u_{n_{i}}, k\right) \rightarrow \min (u, k)$ a.e. in G, we have $u_{k}:=\min (u, k) \in H_{0}^{1, p}(G ; \mu)$ for fixed $k>0$.

Theorem 3.1 yields that there exists a Radon measure $\tilde{\nu}$ in G such that

$$
\int_{G} \mathscr{A}(x, D u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x=\int_{G} \varphi d \tilde{\nu}
$$

for all $\varphi \in C_{0}^{\infty}(G)$. To obtain that $\nu=\tilde{\nu}$, we will show $\nu_{n} \rightarrow \tilde{\nu}$ weakly in G. Fix $1<q<\frac{\varkappa p}{\varkappa(p-1)+1}$. Again, in the same manner as in the proof of [HKM, Lemma 7.43], by (3.8) there exists $c>0$ such that

$$
\begin{equation*}
\int_{G}\left|\nabla u_{n}\right|^{q(p-1)} d \mu \leq c \tag{3.10}
\end{equation*}
$$

where c does not depend n. Hence

$$
\begin{aligned}
\int_{G}\left|\mathscr{A}\left(x, \nabla u_{n}\right) w^{-1+\frac{1}{q}}\right|^{q} d x & \leq c \int_{G}\left(\left|\nabla u_{n}\right|^{p-1}\right)^{q} w^{q} w^{-q+1} d x \\
& =c \int_{G}\left|\nabla u_{n}\right|^{q(p-1)} d \mu \leq c
\end{aligned}
$$

for all n. Moreover, since $\nabla u_{n_{i}} \rightarrow D u$ a.e. in G,

$$
\mathscr{A}\left(x, \nabla u_{n_{i}}\right) w^{-1+\frac{1}{q}} \rightarrow \mathscr{A}(x, D u) w^{-1+\frac{1}{q}}
$$

weakly in $L^{q}(G ; d x)$. On the other hand, by Theorem 2.3 , for any $U \Subset G$

$$
\begin{aligned}
\int_{U}\left|\mathscr{B}\left(x, u_{n}\right) w^{-1+\frac{1}{q}}\right|^{q} d x & \leq \alpha_{3}(U) \int_{U}\left(\left|u_{n}\right|^{p-1}+1\right)^{q} w^{q} w^{-q+1} d \mu \\
& \leq c \int_{U}\left(\left|u_{n}\right|^{q(p-1)}+1\right) d \mu \leq c .
\end{aligned}
$$

Since $u_{n_{i}} \rightarrow u$ a.e. in G, we have

$$
\mathscr{B}\left(x, u_{n_{i}}\right) w^{-1+\frac{1}{q}} \rightarrow \mathscr{B}(x, u) w^{-1+\frac{1}{q}}
$$

weakly in $L^{q}(U ; d x)$. Let $\varphi \in C_{0}^{\infty}(G)$ and U be an open set in G with spt $\varphi \subset U$. Since $w^{1-\frac{1}{q}} \nabla \varphi \in L^{q /(q-1)}(G ; d x)$ and $w^{1-\frac{1}{q}} \varphi \in L^{q /(q-1)}(U ; d x)$, we have

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \int_{G} \varphi d \nu_{n_{i}} \\
& =\lim _{i \rightarrow \infty}\left(\int_{G} \mathscr{A}\left(x, \nabla u_{n_{i}}\right) w^{-1+\frac{1}{q}} w^{1-\frac{1}{q}} \cdot \nabla \varphi d x+\int_{G} \mathscr{B}\left(x, u_{n_{i}}\right) w^{-1+\frac{1}{q}} w^{1-\frac{1}{q}} \varphi d x\right) \\
& =\int_{U} \mathscr{A}(x, D u) w^{-1+\frac{1}{q}} w^{1-\frac{1}{q}} \cdot \nabla \varphi d x+\int_{U} \mathscr{B}(x, u) w^{-1+\frac{1}{q}} w^{1-\frac{1}{q}} \varphi d x \\
& =\int_{G} \mathscr{A}(x, D u) \cdot \nabla \varphi d x+\int_{G} \mathscr{B}(x, u) \varphi d x=\int_{G} \varphi d \tilde{\nu} .
\end{aligned}
$$

Hence the proof is complete.

4. Upper estimate of $(\mathscr{A}, \mathscr{B})$-superharmonic functions

In this section, we give a pointwise upper estimate for an $(\mathscr{A}, \mathscr{B})$-superharmonic function in terms of the (weighted) Wolff potential (see below for the definition). Also, using this estimate, we obtain that an $(\mathscr{A}, \mathscr{B})$-superharmonic function is finite (p, μ)-q.e.

As before, we define

$$
L u=-\operatorname{div} \mathscr{A}(x, \nabla u(x))+\mathscr{B}(x, u(x)) .
$$

In order to show the pointwise upper estimate for an $(\mathscr{A}, \mathscr{B})$-superharmonic function, we prepare following two lemmas.

Lemma 4.1. Suppose that G is an open set in Ω, u is a supersolution of (E) in G and $\nu=L u$ in G. If $G^{\prime} \Subset G$, then

$$
\int_{G^{\prime}} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi d x+\int_{G^{\prime}} \mathscr{B}(x, u) \varphi d x=\int_{G^{\prime}} \varphi d \nu
$$

for all bounded (p, μ)-quasicontinuous $\varphi \in H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$.
Proof. Let $\varphi \in H_{0}^{1, p}\left(G^{\prime} ; \mu\right)$ be bounded (p, μ)-quasicontinuous in G^{\prime}. Choose a sequence of functions $\varphi_{n} \in C_{0}^{\infty}\left(G^{\prime}\right)$ such that $\left\{\varphi_{n}\right\}$ is uniformly bounded, $\varphi_{n} \rightarrow \varphi$ in $H^{1, p}\left(G^{\prime} ; \mu\right)$ and $\varphi_{n} \rightarrow \varphi(p, \mu)$-q.e. in G^{\prime}. Then, since $\varphi_{n} \rightarrow \varphi \nu$-a.e. in G^{\prime} (note
that $\left.\nu \in\left(H_{0}^{1, p}\left(G^{\prime} ; \mu\right)\right)^{*}\right)$ and $\nu\left(G^{\prime}\right)<\infty$, by Lebesgue's convergence theorem we have

$$
\lim _{n \rightarrow \infty} \int_{G^{\prime}} \varphi_{n} d \nu=\int_{G^{\prime}} \varphi d \nu
$$

Also, from (A.3) and (B.2), we obtain

$$
\begin{aligned}
& \mid \int_{G^{\prime}} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi d x+\int_{G^{\prime}} \mathscr{B}(x, u) \varphi d x \\
& \quad-\left(\int_{G^{\prime}} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi_{n} d x+\int_{G^{\prime}} \mathscr{B}(x, u) \varphi_{n} d x\right) \mid \\
& \leq \alpha_{2} \int_{G^{\prime}}|\nabla u|^{p-1}\left|\nabla \varphi-\nabla \varphi_{n}\right| d \mu+\alpha_{3}\left(G^{\prime}\right) \int_{G^{\prime}}\left(|u|^{p-1}+1\right)\left|\varphi-\varphi_{n}\right| d \mu \\
& \leq \alpha_{2}\left(\int_{G^{\prime}}|\nabla u|^{p} d \mu\right)^{(p-1) / p}\left(\int_{G^{\prime}}\left|\nabla \varphi-\nabla \varphi_{n}\right|^{p} d \mu\right)^{1 / p} \\
& \quad+2 \alpha_{3}\left(G^{\prime}\right)\left(\int_{G^{\prime}}(|u|+1)^{p} d \mu\right)^{(p-1) / p}\left(\int_{G^{\prime}}\left|\varphi-\varphi_{n}\right|^{p} d \mu\right)^{1 / p},
\end{aligned}
$$

where in the last inequality we have used Hölder's inequality. Because the last integral tends to zero as $n \rightarrow \infty$, we have

$$
\begin{aligned}
& \int_{G^{\prime}} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi d x+\int_{G^{\prime}} \mathscr{B}(x, u) \varphi d x \\
& =\lim _{n \rightarrow \infty}\left(\int_{G^{\prime}} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi_{n} d x+\int_{G^{\prime}} \mathscr{B}(x, u) \varphi_{n} d x\right) \\
& =\lim _{n \rightarrow \infty} \int_{G^{\prime}} \varphi_{n} d \nu=\int_{G^{\prime}} \varphi d \nu
\end{aligned}
$$

and the lemma follows.
In the following lemma, we use the notation $u_{+}=\max (u, 0)$.
Lemma 4.2. Suppose that G is an open set with $G \Subset \Omega, u$ is an $(\mathscr{A}, \mathscr{B})$ superharmonic function in $G, \nu=L u$ in $G, 2 B=B\left(x_{0}, 2 R\right) \subset G$ and $p-1<\gamma<$ $\frac{2 p p(p-1)}{\varkappa+p-1}$. Then there exists a constant $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), c_{\mu}, \gamma\right)>0$ such that, for every $l \in \mathbf{R}$,

$$
\begin{aligned}
& \left(\frac{1}{\mu(B)} \int_{B}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \leq c A^{\frac{1}{\gamma}\left(1-\frac{1}{\varkappa}\right)}\left(\frac{1}{\mu(2 B)} \int_{2 B}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \quad+c R^{\frac{p}{p-1}} A^{\frac{1}{p-1}-\frac{1}{\varkappa(p-1)}+\frac{1}{\gamma}}\left(|l|^{p-1}+1\right)^{1 /(p-1)}+c A^{\frac{1}{\gamma}-\frac{1}{\varkappa(p-1)}}\left(R^{p} \frac{\nu(2 B)}{\mu(2 B)}\right)^{1 /(p-1)},
\end{aligned}
$$

where

$$
A=\frac{\mu(2 B \cap\{u>l\})}{\mu(2 B)}
$$

Proof. First, we assume $u \in H_{\mathrm{loc}}^{1, p}(G$; $\mu)$, i.e. u is a supersolution of (E) in G. Let $\delta>0$. Set $\tau=\frac{\gamma}{p-1}$,

$$
\Phi(t)= \begin{cases}\left(1+\frac{t-l}{\delta}\right)^{-\tau} & \text { if } t>l \\ 0 & \text { if } t \leq l\end{cases}
$$

and

$$
\Psi(t)=\int_{l}^{t} \Phi(s) d s
$$

Then $\tau>1$ and $\Psi(t) \leq \frac{\delta}{\tau-1}$. Let $2 B_{l^{+}}=\{x \in 2 B \mid u(x)>l\}$ and $\eta \in C_{0}^{\infty}(2 B)$ with $0 \leq \eta \leq 1, \eta=1$ on B and $|\nabla \eta| \leq 2 / R$. Since $\varphi(x)=\Psi(u(x)) \eta^{p}(x) \in$ $H_{0}^{1, p}(G ; \mu)$, we may assume that φ is (p, μ)-quasicontinuous and $\nabla \varphi=\eta^{p} \Phi(u) \nabla u+$ $p \Psi(u) \eta^{p-1} \nabla \eta$, by Lemma 4.1 we have

$$
\begin{aligned}
& \int_{2 B}[\mathscr{A}(x, \nabla u) \cdot \nabla u] \Phi(u) \eta^{p} d x+p \int_{2 B}[\mathscr{A}(x, \nabla u) \cdot \nabla \eta] \Psi(u) \eta^{p-1} d x \\
& \quad+\int_{2 B} \mathscr{B}(x, u) \Psi(u) \eta^{p} d x=\int_{2 B} \Psi(u) \eta^{p} d \nu .
\end{aligned}
$$

From (A.2), (A.3) and (B.2) it follows that

$$
\begin{align*}
\alpha_{1} \int_{2 B_{l^{+}}}|\nabla u|^{p} \Phi(u) \eta^{p} d \mu \leq & p \alpha_{2} \int_{2 B_{l^{+}}}|\nabla u|^{p-1} \Psi(u)|\nabla \eta| \eta^{p-1} d \mu \\
& +\alpha_{3}(G) \int_{2 B_{l^{+}}}\left(|l|^{p-1}+1\right) \Psi(u) \eta^{p} d \mu \tag{4.1}\\
& +\int_{2 B_{l^{+}}} \Psi(u) \eta^{p} d \nu
\end{align*}
$$

where we have used $-\mathscr{B}(x, u) \leq-\mathscr{B}(x, l) \leq \alpha_{3}(G) w(x)\left(|l|^{p-1}+1\right)$ on $2 B_{l^{+}}$. Setting $v=\frac{(u-l)_{+}}{\delta}$, from (4.1) we obtain

$$
\begin{align*}
& \alpha_{1} \int_{2 B_{l+}}|\nabla u|^{p}(1+v)^{-\tau} \eta^{p} d \mu \leq \frac{\delta}{\tau-1}\left(p \alpha_{2} \int_{2 B_{l+}}|\nabla u|^{p-1}|\nabla \eta| \eta^{p-1} d \mu\right. \tag{4.2}\\
& \left.\quad+\alpha_{3}(G) \int_{2 B_{l+}}\left(|l|^{p-1}+1\right) \eta^{p} d \mu+\int_{2 B_{l+}} \eta^{p} d \nu\right)
\end{align*}
$$

Young's inequality yields that, for any $\varepsilon>0$,

$$
\begin{aligned}
|\nabla u|^{p-1}|\nabla \eta| \eta^{p-1} & =|\nabla u|^{p-1} \eta^{p-1}(1+v)^{-\tau \frac{p-1}{p}}(1+v)^{\tau \frac{p-1}{p}}|\nabla \eta| \\
& \leq \frac{p-1}{p} \varepsilon|\nabla u|^{p}(1+v)^{-\tau} \eta^{p}+\frac{1}{p} \varepsilon^{1-p}(1+v)^{\gamma}|\nabla \eta|^{p} .
\end{aligned}
$$

It follows from (4.2) that

$$
\begin{align*}
& \alpha_{1} \int_{2 B_{l^{+}}}|\nabla u|^{p}(1+v)^{-\tau} \eta^{p} d \mu \\
& \leq \frac{\delta}{\tau-1}\left(\alpha_{2}(p-1) \varepsilon \int_{2 B_{l^{+}}}|\nabla u|^{p}(1+v)^{-\tau} \eta^{p} d \mu\right. \\
& \left.\quad+\alpha_{2} \varepsilon^{1-p} \int_{2 B_{l^{+}}}(1+v)^{\gamma}|\nabla \eta|^{p} d \mu\right) \tag{4.3}\\
& \quad+\frac{\delta}{\tau-1}\left(\alpha_{3}(G) \int_{2 B_{l^{+}}}\left(|l|^{p-1}+1\right) \eta^{p} d \mu+\int_{2 B_{l^{+}}} \eta^{p} d \nu\right) .
\end{align*}
$$

Setting $\frac{\alpha_{2} \delta(p-1)}{\tau-1} \varepsilon=\frac{\alpha_{1}}{2}$, that is $\varepsilon=\frac{\alpha_{1}(\tau-1)}{2 \alpha_{2} \delta(p-1)}$, we have

$$
\begin{align*}
& \frac{\alpha_{1}}{2} \int_{2 B_{l^{+}}}|\nabla u|^{p}(1+v)^{-\tau} \eta^{p} d \mu \\
& \leq c\left(\delta^{p} \int_{2 B_{l^{+}}}(1+v)^{\gamma}|\nabla \eta|^{p} d \mu+\delta\left(|l|^{p-1}+1\right) \int_{2 B_{l^{+}}} \eta^{p} d \mu+\delta \int_{2 B_{l^{+}}} \eta^{p} d \nu\right) \tag{4.4}
\end{align*}
$$

where $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), \gamma\right)>0$. Set $g=(1+v)^{1-\frac{\tau}{p}}-1$. Then, we have $g \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$, so that $\eta g \in H_{0}^{1, p}(2 B ; \mu)$. It follows from the Sobolev inequality that

$$
\begin{aligned}
& \left(\frac{1}{\mu(2 B)} \int_{2 B}|\eta g|^{2 \sim p} d \mu\right)^{1 / \varkappa p} \leq c R\left(\frac{1}{\mu(2 B)} \int_{2 B}|\nabla(\eta g)|^{p} d \mu\right)^{1 / p} \\
& \leq c R\left\{\left(\frac{1}{\mu(2 B)} \int_{2 B}|\nabla \eta|^{p} g^{p} d \mu\right)^{1 / p}+\left(\frac{1}{\mu(2 B)} \int_{2 B}|\nabla g|^{p} \eta^{p} d \mu\right)^{1 / p}\right\}
\end{aligned}
$$

so that

$$
\begin{align*}
& \left(\frac{1}{\mu(2 B)} \int_{2 B}|\eta g|^{2 \sim} d \mu\right)^{1 / \varkappa} \tag{4.5}\\
& \leq \frac{c R^{p}}{\mu(2 B)}\left(\int_{2 B}|\nabla \eta|^{p} g^{p} d \mu+\int_{2 B}|\nabla g|^{p} \eta^{p} d \mu\right)
\end{align*}
$$

Since

$$
|\nabla g|^{p}=\left|\left(1-\frac{\tau}{p}\right)(1+v)^{-\frac{\tau}{p}} \nabla v\right|^{p}=\left|1-\frac{\tau}{p}\right|^{p}(1+v)^{-\tau}|\nabla u|^{p} \delta^{-p} \chi_{2 B_{l+}},
$$

where $\chi_{2 B_{l+}}$ is a characteristic function on $2 B_{l^{+}}$, from (4.4) we obtain

$$
\begin{align*}
& \int_{2 B}|\nabla g|^{p} \eta^{p} d \mu=c \delta^{-p} \int_{2 B_{l+}}|\nabla u|^{p}(1+v)^{-\tau} \eta^{p} d \mu \\
& \leq c\left(\int_{2 B_{l^{+}}}(1+v)^{\gamma}|\nabla \eta|^{p} d \mu+\delta^{1-p}\left(|l|^{p-1}+1\right)\right. \tag{4.6}\\
& \left.\quad \cdot \int_{2 B_{l^{+}}} \eta^{p} d \mu+\delta^{1-p} \int_{2 B_{l^{+}}} \eta^{p} d \nu\right)
\end{align*}
$$

Also, since $p-1<\gamma$, we have $p-\tau<\gamma$, so that

$$
\begin{equation*}
g^{p} \leq(1+v)^{p-\tau} \leq(1+v)^{\gamma} \tag{4.7}
\end{equation*}
$$

on $2 B_{l^{+}}$and $g=0$ on $2 B \backslash 2 B_{l^{+}}$. It follows from (4.5), (4.6) and (4.7) that

$$
\begin{align*}
& \left(\frac{1}{\mu(2 B)} \int_{2 B}|\eta g|^{\mid г p} d \mu\right)^{1 / \varkappa} \\
& \leq \frac{c R^{p}}{\mu(2 B)}\left(\int_{2 B_{l^{+}}}(1+v)^{\gamma}|\nabla \eta|^{p} d \mu+\delta^{1-p}\left(|l|^{p-1}+1\right)\right. \\
& \left.\cdot \int_{2 B_{l^{+}}} \eta^{p} d \mu+\delta^{1-p} \int_{2 B_{l^{+}}} \eta^{p} d \nu\right) \tag{4.8}\\
& \leq c R^{p}\left(\frac{R^{-p}}{\mu(2 B)} \int_{2 B_{l^{+}}}(1+v)^{\gamma} d \mu+A \delta^{1-p}\left(|l|^{p-1}+1\right)+\delta^{1-p} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}\right)
\end{align*}
$$

where

$$
A=\frac{\mu(2 B \cap\{u>l\})}{\mu(2 B)}
$$

Since $\gamma<\varkappa p-\frac{\gamma \varkappa}{p-1}=\varkappa p\left(1-\frac{\tau}{p}\right)$, we have $v^{\gamma} \leq v^{\varkappa p\left(1-\frac{\tau}{p}\right)} \leq c g^{\varkappa p}$ on $\{v \geq 1\}$. Hence (4.8) yields

$$
\begin{aligned}
& \left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p} v^{\gamma} d \mu\right)^{1 / \varkappa} \\
& \leq\left(\frac{\mu\left(2 B \cap\left\{0<\eta^{\varkappa p} v^{\gamma}<1\right\}\right)}{\mu(2 B)}\right)^{1 / \varkappa}+\left(\frac{1}{\mu(2 B)} \int_{2 B \cap\left\{\eta^{\varkappa p} v^{\gamma} \geq 1\right\}} \eta^{\varkappa p} v^{\gamma} d \mu\right)^{1 / \varkappa} \\
& \leq A^{1 / \varkappa}+c\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p} g^{2 \varkappa p} d \mu\right)^{1 / \varkappa} \\
& \leq A^{1 / \varkappa} \\
& \quad+c R^{p}\left(\frac{R^{-p}}{\mu(2 B)} \int_{2 B_{l^{+}}}(1+v)^{\gamma} d \mu+A \delta^{1-p}\left(|l|^{p-1}+1\right)+\delta^{1-p} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& \left(\frac{\delta^{-\gamma}}{\mu(2 B)} \int_{2 B} \eta^{2 \mu p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \varkappa} \\
& \leq A^{1 / \varkappa}+c \delta^{-\gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B_{l+}}(u-l)_{+}^{\gamma} d \mu\right) \tag{4.9}\\
& \quad+c R^{p} \delta^{1-p}\left(A\left(|l|^{p-1}+1\right)+\frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}\right)+c_{1} A
\end{align*}
$$

where $c_{1}=c_{1}\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), \gamma\right)>0$. Setting

$$
\left(\frac{\delta^{-\gamma}}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \varkappa}=\left(2+c_{1}\right) A^{1 / \varkappa}
$$

that is,

$$
\delta=\left(2+c_{1}\right)^{-\varkappa / \gamma} A^{-1 / \gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma}
$$

from (4.9) we obtain

$$
\begin{aligned}
A^{1 / \varkappa} \leq & c A\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{-1} \frac{1}{\mu(2 B)} \int_{2 B_{l^{+}}}(u-l)_{+}^{\gamma} d \mu \\
& +c R^{p} A\left(|l|^{p-1}+1\right) A^{(p-1) / \gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{-(p-1) / \gamma} \\
& +c R^{p} A^{(p-1) / \gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{-(p-1) / \gamma} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}
\end{aligned}
$$

where we have used $A \leq A^{1 / \varkappa}$. It follows that either

$$
\frac{A^{1 / \varkappa}}{2} \leq c A\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{-1} \frac{1}{\mu(2 B)} \int_{2 B_{l^{+}}}(u-l)_{+}^{\gamma} d \mu
$$

or

$$
\begin{aligned}
\frac{A^{1 / \varkappa}}{2} \leq & c R^{p} A\left(|l|^{p-1}+1\right) A^{(p-1) / \gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{2 p p}(u-l)_{+}^{\gamma} d \mu\right)^{-(p-1) / \gamma} \\
& +c R^{p} A^{(p-1) / \gamma}\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{-(p-1) / \gamma} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)} .
\end{aligned}
$$

Therefore, either

$$
\begin{align*}
& \left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{\varkappa p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \leq c A^{\frac{1}{\gamma}\left(1-\frac{1}{\varkappa}\right)}\left(\frac{1}{\mu(2 B)} \int_{2 B_{l^{+}}}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \tag{4.10}
\end{align*}
$$

or

$$
\begin{align*}
& \left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{2 p p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \leq c R^{p /(p-1)} A^{\frac{1}{p-1}\left(1-\frac{1}{\chi}\right)+\frac{1}{\gamma}}\left(|l|^{p-1}+1\right)^{1 /(p-1)} \tag{4.11}\\
& \quad+c A^{\frac{1}{\gamma}-\frac{1}{\varkappa(p-1)}}\left(R^{p} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}\right)^{1 /(p-1)}
\end{align*}
$$

Therefore the doubling property, (4.10) and (4.11) yield

$$
\begin{aligned}
& \left(\frac{1}{\mu(B)} \int_{B}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \leq c\left(\frac{1}{\mu(2 B)} \int_{2 B} \eta^{2 p}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \leq c A^{\frac{1}{\gamma}\left(1-\frac{1}{\varkappa}\right)}\left(\frac{1}{\mu(2 B)} \int_{2 B}(u-l)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \quad+c R^{p /(p-1)} A^{\frac{1}{p-1}-\frac{1}{\varkappa(p-1)}+\frac{1}{\gamma}}\left(|l|^{p-1}+1\right)^{1 /(p-1)}+c A^{\frac{1}{\gamma}-\frac{1}{\varkappa(p-1)}}\left(R^{p} \frac{\nu(\operatorname{supp} \eta)}{\mu(2 B)}\right)^{1 /(p-1)} .
\end{aligned}
$$

Hence the required inequality holds with $\nu(B)$ replaced by $\nu(\operatorname{supp} \eta)$ in the case $u \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$.

To conclude the proof, let u_{0} be a nonnegative bounded $(\mathscr{A}, \mathscr{B})$-superharmonic function in G (see Lemma 2.1) and let $u_{k}=\min \left(u, u_{0}+k\right)$ for $k>0$. Then, $u_{k} \in H_{\mathrm{loc}}^{1, p}(G ; \mu)$. Letting $\nu_{k}=L u_{k}$, we have $\nu_{k} \rightarrow \nu$ weakly in G by Remark 3.1. Therefore, we obtain from [M, Lemma 2.11] that

$$
\limsup _{k \rightarrow \infty} \nu_{k}(\operatorname{supp} \eta) \leq \nu(\operatorname{supp} \eta)
$$

in G. Hence Lebesgue's convergence theorem yields the claim of this lemma.
For $x_{0} \in \Omega$ and $R>0$, we define

$$
W_{p, \mu}^{\nu}\left(x_{0}, R\right)=\int_{0}^{R}\left(t^{p} \frac{\nu\left(B\left(x_{0}, t\right)\right)}{\mu\left(B\left(x_{0}, t\right)\right)}\right)^{\frac{1}{p-1}} \frac{1}{t} d t
$$

and $W_{p, \mu}^{\nu}$ is said to be the (weighted) Wolff potential of ν (cf. [M, §3]).
Using Lemma 4.2, we can show the following theorem.
Theorem 4.1. Suppose that $0<R, G$ is an open set with $G \Subset \Omega, 2 B=$ $B\left(x_{0}, 2 R\right) \subset G, u$ is an $(\mathscr{A}, \mathscr{B})$-superharmonic function in G and $\nu=L(u)$. Then for any γ with $p-1<\gamma$, there exists a constant $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), c_{\mu}, \gamma\right)>0$ such that

$$
u_{+}\left(x_{0}\right) \leq c\left(\frac{1}{\mu(B)} \int_{B} u_{+}^{\gamma} d \mu\right)^{1 / \gamma}+c W_{p, \mu}^{\nu}\left(x_{0}, 2 R\right)+c R^{p /(p-1)}
$$

Proof. By Hölder's inequality, we may only show the case $p-1<\gamma<\frac{\varkappa p(p-1)}{\varkappa+p-1}$. Let $R_{j}=2^{1-j} R, B_{j}=B\left(x_{0}, R_{j}\right)$,

$$
M_{j}=\left(R_{j}^{p} \frac{\nu\left(B_{j}\right)}{\mu\left(B_{j}\right)}\right)^{\frac{1}{p-1}}
$$

and $\lambda>0$ be a real number. We define a sequence $\left\{l_{j}\right\}$ inductively. Let $l_{0}=0$ and

$$
l_{j+1}=l_{j}+\lambda^{-1}\left(\frac{1}{\mu\left(B_{j+1}\right)} \int_{B_{j+1}}\left(u-l_{j}\right)_{+}^{\gamma} d \mu\right)^{1 / \gamma}
$$

Set

$$
A_{j}=\frac{\mu\left(B_{j} \cap\left\{u>l_{j}\right\}\right)}{\mu\left(B_{j}\right)} .
$$

Then since

$$
\begin{align*}
\mu\left(B_{j} \cap\left\{u>l_{j}\right\}\right) & \leq\left(l_{j}-l_{j-1}\right)^{-\gamma} \int_{B_{j} \cap\left\{u>l_{j}\right\}}\left(u-l_{j-1}\right)_{+}^{\gamma} d \mu \\
& \leq\left(l_{j}-l_{j-1}\right)^{-\gamma} \int_{B_{j}}\left(u-l_{j-1}\right)_{+}^{\gamma} d \mu=\lambda^{\gamma} \mu\left(B_{j}\right), \tag{4.12}
\end{align*}
$$

we have $A_{j} \leq \lambda^{\gamma}$. This inequality and Lemma 4.2 yield

$$
\begin{aligned}
& l_{j+1}-l_{j}=\lambda^{-1}\left(\frac{1}{\mu\left(B_{j+1}\right)} \int_{B_{j+1}}\left(u-l_{j}\right)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \leq c \lambda^{-1} A_{j}^{\frac{1}{\gamma}\left(1-\frac{1}{\varkappa}\right)}\left(\frac{1}{\mu\left(B_{j}\right)} \int_{B_{j}}\left(u-l_{j}\right)_{+}^{\gamma} d \mu\right)^{1 / \gamma} \\
& \quad+c \lambda^{-1} R_{j}^{p /(p-1)} A_{j}^{\frac{1}{p-1}-\frac{1}{\varkappa(p-1)}+\frac{1}{\gamma}}\left(l_{j}^{p-1}+1\right)^{1 /(p-1)}+c \lambda^{-1} A_{j}^{\frac{1}{\gamma}-\frac{1}{\varkappa(p-1)}} M_{j} \\
& \leq c A_{j}^{\frac{1}{\gamma}\left(1-\frac{1}{\varkappa}\right)}\left(l_{j}-l_{j-1}\right)+c \lambda^{-1} R_{j}^{p /(p-1)} A_{j}^{\frac{1}{p-1}-\frac{1}{\varkappa(p-1)}+\frac{1}{\gamma}}\left(l_{j}^{p-1}+1\right)^{1 /(p-1)} \\
& \quad+c \lambda^{-1} A_{j}^{\frac{1}{\gamma}-\frac{1}{\varkappa(p-1)}} M_{j} \\
& \leq c \lambda^{1-\frac{1}{\varkappa}}\left(l_{j}-l_{j-1}\right)+c R_{j}^{p /(p-1)} \lambda^{\frac{\gamma}{p-1}-\frac{\gamma}{\varkappa(p-1)}}\left(l_{j}^{p-1}+1\right)^{1 /(p-1)}+c \lambda^{-\frac{\gamma}{\varkappa(p-1)}} M_{j} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& l_{k}-l_{1} \leq l_{k+1}-l_{1}=\sum_{j=1}^{k}\left(l_{j+1}-l_{j}\right) \\
& \leq c \lambda^{1-\frac{1}{\varkappa}} \sum_{j=1}^{k}\left(l_{j}-l_{j-1}\right)+c \lambda^{\frac{\gamma}{p-1}-\frac{\gamma}{\varkappa(p-1)}} \sum_{j=1}^{k} R_{j}^{p /(p-1)}\left(l_{j}^{p-1}+1\right)^{1 /(p-1)} \\
& \quad+c \lambda^{-\frac{\gamma}{\varkappa(p-1)}} \sum_{j=1}^{k} M_{j} \\
& \leq c \lambda^{1-\frac{1}{\varkappa}} l_{k}+c \lambda^{\frac{\gamma}{p-1}-\frac{\gamma}{\varkappa(p-1)}}\left(l_{k}^{p-1}+1\right)^{1 /(p-1)} \sum_{j=1}^{k} R_{j}^{p /(p-1)}+c \lambda^{-\frac{\gamma}{\varkappa(p-1)}} \sum_{j=1}^{k} M_{j},
\end{aligned}
$$

in the last inequality we have used $l_{0}=0$. Choosing λ small enough, we can obtain

$$
\begin{equation*}
l_{k} \leq c l_{1}+c \sum_{j=1}^{\infty} M_{j}+c \sum_{j=1}^{\infty} R_{j}^{p /(p-1)} \tag{4.13}
\end{equation*}
$$

where $c=c\left(p, \alpha_{1}, \alpha_{2}, \alpha_{3}(G), c_{\mu}, \gamma\right)>0$. Also, letting $\lambda<1$, by the definition of l_{j} we have

$$
l_{j}-l_{j-1} \geq \inf _{B_{j}}\left(u-l_{j-1}\right)_{+} \geq \inf _{B_{j}} u_{+}-l_{j-1}
$$

so that

$$
\begin{equation*}
\inf _{B_{j}} u_{+} \leq l_{j} . \tag{4.14}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\sum_{j=1}^{\infty} M_{j} \leq W_{p, \mu}^{\nu}\left(x_{0}, 2 R\right) \tag{4.15}
\end{equation*}
$$

Hence from the lower semicontinuity, (4.13), (4.14) and (4.15) we obtain

$$
\begin{aligned}
u_{+}\left(x_{0}\right) & \leq \lim _{k \rightarrow \infty} \inf _{B_{k}} u_{+} \leq \lim _{k \rightarrow \infty} l_{k} \\
& \leq c\left(\frac{1}{\mu(B)} \int_{B} u_{+}^{\gamma} d \mu\right)^{1 / \gamma}+c W_{p, \mu}^{\nu}\left(x_{0}, 2 R\right)+c R^{p /(p-1)}
\end{aligned}
$$

as required.
Let G be an open subset in Ω and $E=\left\{x \in G \mid W_{p, \mu}^{\nu}(x, r)=\infty\right.$ for some $\left.r>0\right\}$. Then, it is known that $\operatorname{cap}_{p, \mu} E=0$ (for example, see [M, Theorem 3.1] and [HKM, Theorem 10.1]). Hence, from the above theorem we obtain the following corollary which will be used to show the uniqueness result of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions of $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values in next section.

Corollary 4.1. An $(\mathscr{A}, \mathscr{B})$-superharmonic function is finite (p, μ)-q.e.

5. Uniqueness of (\mathscr{A}, \mathscr{B})-superharmonic solutions

In this section, we discuss uniqueness of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions of $\left(\mathrm{E}_{\nu}\right)$ with boundary conditions $\min (u, k) \in H_{0}^{1, p}(\Omega ; \mu)$ for all $k>0$.

If $\nu(E)=0$ whenever $\operatorname{cap}_{p, \mu} E=0$, then we say that ν is absolutely continuous with respect to (p, μ)-capacity.

Proposition 5.1. ([M, Corollary 6.5]) If G is an open set with $G \Subset \Omega$ and ν is a finite Radon measure in G which is absolutely continuous with respect to (p, μ)-capacity, then there is a nondecreasing sequence of Radon measures $\nu_{n} \in$ $\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ such that $\nu_{n}(G) \leq \nu(G)$ for all $n=1,2, \ldots$ and

$$
\lim _{n \rightarrow \infty} \int_{G} \varphi d \nu_{n}=\int_{G} \varphi d \nu
$$

for any bounded Borel measurable function φ on G.
Hereafter, we shall always assume that functions in $H_{\mathrm{loc}}^{1, p}(\Omega ; \mu)$ are (p, μ)-quasicontinuous. (see [HKM, Theorem 4.4]).

Let G be an open set with $G \Subset \Omega$. If an $(\mathscr{A}, \mathscr{B})$-superharmonic solution u of $\left(\mathrm{E}_{\nu}\right)$ in G satisfies $u \in L^{p-1}(G ; d x),\left|\nabla T_{k}^{\sigma}(u)\right| \in L^{p-1}(G ; \mu)$ and for $\sigma \in\{+,-\}$

$$
\int_{G} \mathscr{A}(x, D u) \cdot \nabla T_{k}^{\sigma}(u-\varphi) d x+\int_{G} \mathscr{B}(x, u) T_{k}^{\sigma}(u-\varphi) d x=\int_{G} T_{k}^{\sigma}(u-\varphi) d \nu
$$

for all bounded $\varphi \in H_{0}^{1, p}(G ; \mu)$ and $k>0$, then we call u an entropy solution of $\left(\mathrm{E}_{\nu}\right)$ in G. Here,

$$
T_{k}^{+}(t)=\max \{\min (t, k), 0\} \quad \text { and } \quad T_{k}^{-}(t)=\min \{\max (t,-k), 0\} .
$$

Then, there exists an $(\mathscr{A}, \mathscr{B})$-superharmonic entropy solutions of $\left(\mathrm{E}_{\nu}\right)$ with weak boundary values zero.

Theorem 5.1. Suppose that G is an open set with $G \Subset \Omega, \nu$ is a finite Radon measures in G which is absolutely continuous with respect to (p, μ)-capacity. Then, there exists an $(\mathscr{A}, \mathscr{B})$-superharmonic entropy solution u of $\left(E_{\nu}\right)$ in G with $\min (u, k) \in H_{0}^{1, p}(G ; \mu)$ for all $k>0$.

Proof. By Proposition 5.1, we can choose Radon measures $\nu_{n} \in\left(H_{0}^{1, p}(G ; \mu)\right)^{*}$ such that $\nu_{n} \leq \nu_{n+1} \leq \nu$ for all $n=1,2, \ldots$ and $\nu_{n} \rightarrow \nu$ weakly in G. Then, Theorem 3.2 yields that there exists an $(\mathscr{A}, \mathscr{B})$-superharmonic function $u_{n} \in H_{0}^{1, p}(G ; \mu)$ such that $L u_{n}=\nu_{n}$. By Lemma 3.1, $u_{n} \leq u_{n+1}$. As in the proof of Theorem 3.3, we can choose a subsequence $\left\{u_{n_{i}}\right\}$ and an $(\mathscr{A}, \mathscr{B})$-superharmonic function u in G such that $u_{n_{i}} \rightarrow u$ a.e. in $G, \nabla u_{n_{i}} \rightarrow D u$ a.e. in G and $L u=\nu$ with $\min (u, k) \in H_{0}^{1, p}(G ; \mu)$ for $k=1,2, \ldots$.

By (3.8) in the proof of Theorem 3.3, we see that $\left\{\int_{G}\left|\nabla \min \left(u_{n_{i}}, k\right)\right|^{p} d \mu\right\}$ is bounded, so that $\left\{\mathscr{A}\left(x, \nabla \min \left(u_{n_{i}}, k\right)\right) w^{-1 / p}\right\}$ is bounded in $L^{p /(p-1)}(G ; d x)$. Since $\nabla u_{n_{i}} \rightarrow D u$ a.e. in G, it follows that

$$
\mathscr{A}\left(x, \nabla \min \left(u_{n_{i}}, k\right)\right) w^{-1 / p} \rightarrow \mathscr{A}(x, \nabla \min (u, k)) w^{-1 / p}
$$

weakly in $L^{p /(p-1)}(G ; d x)$ for any $k>0$. Moreover, since u_{n} increases to u a.e. in $G, \mathscr{B}\left(x, u_{n_{i}}\right) \rightarrow \mathscr{B}(x, u)$ a.e. in G and $\mathscr{B}\left(x, u_{1}\right) \leq \mathscr{B}\left(x, u_{n_{i}}\right) \leq \mathscr{B}(x, u)$ a.e. in G. Choosing $s=p-1$ in (3.9) in the proof of Theorem 3.3, we see that $\mathscr{B}(x, u) \in$ $L^{1}(G ; d x)$.

Let $\varphi \in H_{0}^{1, p}(G ; \mu)$ be bounded and let $|\varphi| \leq M$. Since $u_{n} \leq u \leq k+M$ whenever $u-\varphi \leq k$ and $\left|\nabla T_{k}^{\sigma}(u-\varphi)\right| w^{1 / p} \in L^{p}(G ; d x)$, we have

$$
\begin{aligned}
& \int_{G} T_{k}^{\sigma}(u-\varphi) d \nu=\lim _{i \rightarrow \infty} \int_{G} T_{k}^{\sigma}(u-\varphi) d \nu_{n_{i}} \\
& =\lim _{i \rightarrow \infty}\left(\int_{G} \mathscr{A}\left(x, \nabla u_{n_{i}}\right) \cdot \nabla T_{k}^{\sigma}(u-\varphi) d x+\int_{G} \mathscr{B}\left(x, u_{n_{i}}\right) T_{k}^{\sigma}(u-\varphi) d x\right) \\
& =\lim _{i \rightarrow \infty}\left(\int_{G} \mathscr{A}\left(x, \nabla \min \left(u_{n_{i}}, k+M\right)\right) w^{-1 / p} \cdot \nabla T_{k}^{\sigma}(u-\varphi) w^{1 / p} d x\right. \\
& \left.\quad+\int_{G} \mathscr{B}\left(x, u_{n_{i}}\right) T_{k}^{\sigma}(u-\varphi) d x\right) \\
& =\int_{G} \mathscr{A}(x, \nabla \min (u, k+M)) w^{-1 / p} \cdot \nabla T_{k}^{\sigma}(u-\varphi) w^{1 / p} d x \\
& \quad+\int_{G} \mathscr{B}(x, u) T_{k}^{\sigma}(u-\varphi) d x \\
& =\int_{G} \mathscr{A}(x, D u) \cdot \nabla T_{k}^{\sigma}(u-\varphi) d x+\int_{G} \mathscr{B}(x, u) T_{k}^{\sigma}(u-\varphi) d x .
\end{aligned}
$$

Hence the proof is complete.
In the same manner as [KX, Lemma 2.3], we obtain the following lemma.
Lemma 5.1. Suppose that G is an open set with $G \Subset \Omega, \nu$ is a finite Radon measure in G which is absolutely continuous with respect to (p, μ)-capacity, and u is an $(\mathscr{A}, \mathscr{B})$-superharmonic entropy solution of $\left(E_{\nu}\right)$ in G. Then for any $M>0$ and $k>0$,

$$
\begin{aligned}
& \alpha_{1} \int_{\{x \in G \mid k \leq u(x) \leq k+M\}}|D u|^{p} d \mu \\
& \leq M \nu(\{x \in G \mid u(x)>k\})+M \int_{\{x \in G \mid u(x)>k\}}|\mathscr{B}(x, u)| d x .
\end{aligned}
$$

By the above lemma and Corollary 4.1, we have the following corollary.
Corollary 5.1 Suppose that M is a positive constant, G is an open subset in Ω, ν is a finite Radon measure in G which is absolutely continuous with respect to (p, μ)-capacity, and u is an entropy solution of $\left(E_{\nu}\right)$ in G. Then

$$
\lim _{k \rightarrow \infty} \int_{\{x \in G \mid k \leq u(x) \leq k+M\}}|D u|^{p} d \mu=0
$$

Using the above corollary, as in the proof of [KX, Theorem 2.5], we can show the following uniqueness result of $(\mathscr{A}, \mathscr{B})$-superharmonic solutions of $\left(\mathrm{E}_{\nu}\right)$ with weak zero boundary values. (Note that we use Corollary 2.2 to show that the inequality $u_{1} \leq u_{2}$ holds everywhere in G.)

Theorem 5.2. Suppose that G is an open set with $G \Subset \Omega, \nu_{1}$ and ν_{2} are finite Radon measures in G that are absolutely continuous with respect to (p, μ) capacity and u_{i} is an $(\mathscr{A}, \mathscr{B})$-superharmonic entropy solution in G of $\left(E_{\nu_{i}}\right)$ with $\min \left(u_{i}, k\right) \in H_{0}^{1, p}(G ; \mu)$ for all $k>0$ for $i=1$, 2. If $\nu_{1} \leq \nu_{2}$, then $u_{1} \leq u_{2}$ in G.

Acknowledgments. The author is grateful to Professor Fumi-Yuki Maeda for letting me include his proof of Theorem 2.1 and for giving many valuable comments.

This research has been supported by a Grant-in-Aid for Scientific Research in Japan.

References

[AG] Armitage, D. H., and S. J. Gardiner: Classical potential theory. - Springer, 2001.
[B+5] Bénilan, L., L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. Vazques: An L^{1}-theory of existence and uniqueness of solutions nonlinear elliptic equations. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 22, 1995, 241-274.
[BG] Boccardo, L., and T. Gallouët: Nonlinear elliptic and parabolic equations involving measure data. - J. Funct. Anal. 87, 1989, 149-169.
[HK] Heinonen, J., and T. Kilpeläinen: Polar sets for supersolutions of degenerate elliptic equations. - Math. Scand. 63, 1988, 136-150.
[HKM] Heinonen, J., T. KilpelÄinen, and O. Martio : Nonlinear potential theory of degenerate elliptic equations. - Clarendon Press, 1993.
[K] Kilpeläinen, T.: Nonlinear potential theory and PDEs. - Potential Anal. 3, 1994, 107118.
[KM1] Kilpeläinen, T., and J. Malý: Degenerate elliptic equations with measure data nonlinear potentials. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 19, 1992, 591-613.
[KM2] Kilpeläinen, T., and J. Malý: The Wiener test and potential estimates for quasilinear elliptic equations. - Acta Math. 172, 1994, 137-161.
[KX] Kilpeläinen, T., and X. Xu: On the uniqueness problem for quasilinear elliptic equations involving measures. - Rev. Mat. Iberoamericana 12, 1996, 461-475.
[MO1] Maeda, F.-Y., and T. Ono: Resolutivity of ideal boundary for nonlinear Dirichlet problems. - J. Math. Soc. Japan 52, 2000, 561-581.
[MO2] Maeda, F.-Y., and T. Ono: Properties of harmonic boundary in nonlinear potential theory. - Hiroshima Math. J. 30, 2000, 513-523.
[MO3] Maeda, F.-Y., and T. Ono: Perturbation theory for nonlinear Dirichlet problems. - Ann. Acad. Sci. Fenn. Math. 28, 2003, 207-222.
[MZ] Malý, J., and W. P. Ziemer: Fine regularity of solutions of elliptic partial differential equations. - Math. Surveys Monogr. 51, American Mathematical Society, 1997.
[M] Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures. - Ann. Acad. Sci. Fenn. Math. Diss. 104, 1996, 1-71.
[O1] Ono, T.: On solutions of quasi-linear partial differential equations $-\operatorname{div} \mathscr{A}(x, \nabla u)+$ $\mathscr{B}(x, u)=0$. - RIMS Kokyuroku 1016, 1997, 146-165.
[O2] Ono, T.: Potential theory for quasi-linear partial differential equations $-\operatorname{div} \mathscr{A}(x, \nabla u)+$ $\mathscr{B}(x, u)=0$. - Doctoral Thesis, Hiroshima University, 2000.
[R] Rakotoson, J. M.: Uniqueness of renormalized solutions in a T-set for the L^{1}-data problem and the link between various formulations. - Indiana Univ. Math. J. 43, 1994, 685-702.

Received 1 February 2007

