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Abstract. The well-known Schwarz–Pick lemma states that any analytic mapping φ of the
unit disk U into itself satisfies the inequality

|φ′(z)| ≤ 1− |φ(z)|2
1− |z|2 , z ∈ U.

This estimate remains the same if we restrict ourselves to univalent mappings. The lower estimate
is |φ′(z)| ≥ 0 generally or |φ′(z)| > 0 for univalent functions. To make the lower estimate non-
trivial we consider univalent functions and fix the angular limit and the angular derivative at some
points of the unit circle. In order to obtain sharp estimates we make use of the reduced moduli of
digons.

1. Introduction

Let U denote the unit disk; U = {z : |z| < 1}. Pick’s invariant form of the
Schwarz lemma states that

|φ′(z)| ≤ 1− |φ(z)|2
1− |z|2 ,

for any analytic mapping φ : U → U and z ∈ U . This estimate is obviously sharp
and remains true when we restrict ourselves to univalent φ. Higher derivatives |φ(n)|
were estimated as well, see [1, 7]. The lower estimates for |φ′(z)| are trivial. Two
different reasons may be given to explain this phenomenon. The first one is the
possible branching of an analytic mapping φ−1 at the point φ(z). The second is
more appropriate to univalent mappings. One may choose a sequence of univalent
mappings φn collapsing into the point z as n → ∞, and therefore, the conformal
radius |φ′n(z)| tends to 0. To avoid such behaviour one may prescribe a certain value
to φ at another point of U or at the boundary ∂U in the angular sense. In the first
case this leads to bounded Montel’s functions. However, even this is not sufficient
to overcome collapsing. So we propose to fix also the derivative or the angular
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derivative at this extra point. The case of a fixed internal point was discussed in
[15] in a slightly different context. However, letting the internal point tend to the
boundary ∂U gives no result and the boundary case must be treated separately. Let
us consider the class of conformal homeomorphisms φ of U such that the angular
limit ∠ lim

z→1
φ(z) = 1 exists and such that the angular limit ∠ lim

z→1
φ′(z) exists and

equals β, |β| < ∞. In this case the mapping φ(z) is conformal at the boundary
point 1. Under these restrictions one obtains sharp lower estimates of |φ′(z)|, z ∈ U .
This result can bee seen as a simple modification of [12] or [16, Theorem 3.5.1]. The
case of n fixed boundary points is new and is dealt with in this note. The estimates
are sharp, with the extremal functions being given as the solution of a differential
equation.

We thank Pietro Poggi-Corradini and Robert Burckel who informed us about
the paper [14] where the simplest case of one fixed boundary point was proved.

2. Angular limits and angular derivatives

In this section we present a short overview of the properties of angular limits
and angular derivatives. For more information we refer to [9, 10]. We say that
a conformal mapping φ : U → C has the angular limit ∠ lim

z→ζ
φ(z) = α at a point

ζ ∈ ∂U , if lim
z→ζ, z∈∆ζ

φ(z) = α for any Stolz angle ∆ζ centered on ζ. If the limit

lim
z→ζ

φ(z) = α exists for all z ∈ U , then φ becomes continuous at ζ as a function in

U ∪ {ζ}. The angular limit α is a principal point of the image of the prime end of
the mapping φ at the point ζ. It is known that the angular limit f(ζ) = α exists
for almost all ζ ∈ ∂U , moreover, the exceptional set in ∂U has capacity zero. But
φ is continuous at ζ only in some restricted cases. We say that φ has the angular
derivative φ′(ζ) = β at the point ζ ∈ ∂U if the finite angular limit f(ζ) = α exists
and if

∠ lim
z→ζ

f(z)− α

z − ζ
= β.

The angular derivative exists if and only if the analytic function φ′(z) has the angular
limit ∠ lim

z→ζ
φ′(z) = β. Let us mention here that in this paper we consider only finite

angular derivatives. Generally, very little may be said about the existence of the
angular derivatives. However, the Julia–Wolff theory implies that in the case of
φ : U → U , the angular derivative φ′(ζ) exists (but perhaps may be infinite) at all
points ζ ∈ ∂U where the angular limit φ(ζ) exists and |φ(ζ)| = 1. Furthermore,
the mapping at the point ζ may be conformal (0 < |φ′(ζ)| < ∞) or twisting. The
McMillan Twist Theorem states that φ is conformal for almost all such points. By
the results of Julia, Carathéodory, and Wolff (see, e.g., [6, page 57] and [8, page
306]), if ζ is a boundary fixed point φ(ζ) = ζ, then φ′(ζ) is real.
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3. Moduli and extremal partitions

3.1. The reduced modulus of a digon. Let D be a hyperbolic simply
connected domain in C with two finite fixed boundary points a, b (maybe with the
same support) on its piecewise smooth boundary. It is called a digon. Denote by
S(a, ε) a region that is the connected component of D∩{|z−a| < ε} with the point
a in its border. Denote by Dε the domain D \ {S(a, ε1) ∪ S(b, ε2)} for sufficiently
small ε1 and ε2 such that there is a curve in Dε connecting the opposite sides on
S(a, ε1) and S(b, ε2). Let M(Dε) be the modulus of the family of paths in Dε that
connect the boundary arcs of S(a, ε1) and S(b, ε2) when lie in the circumferences
|z − a| = ε1 and |z − b| = ε2 (we choose a single arc in each circle so that both arcs
can be connected in Dε). If the limit

(1) m(D, a, b) = lim
ε1,2→0

(
1

M(Dε)
+

1

ϕa

log ε1 +
1

ϕb

log ε2

)
,

exists, where ϕa = sup ∆a and ϕb = sup ∆b are the inner angles and ∆a, ∆b are the
Stolz angles inscribed in D at a or b respectively, then m(D, a, b is called the reduced
modulus of the digon D. Various conditions guarantee the existence of this modulus,
whereas even in the case of a piecewise analytic boundary there are examples [13]
which show that this is not always the case. The existence of the limit (1) is a local
characteristic of the domain D (see [13], Theorem 1.2). If the domain D is conformal
(see the definition in [9, page 80]) at the points a and b, then ([13], Theorem 1.3)
the limit (1) exists. More generally, suppose that there is a conformal map f(z) of
the domain S(a, ε1) ⊂ D onto a circular sector, so that the angular limit f(a) exists
which is thought of as a vertex of this sector of angle ϕa. If the function f has the
finite non-zero angular derivative f ′(a) we say that the domain D is also conformal
at the point a (compare [9, page 80]). If the digon D is conformal at the points a,
b then the limit (1) exists ([13], Theorem 1.3). It is noteworthy that Jenkins and
Oikawa [4] in 1977 applied extremal length techniques to study the behaviour of
a regular univalent map at a boundary point. Necessary and sufficient conditions
were given for the existence of a finite non-zero angular derivative. Independently
a similar results have been obtained by Rodin and Warschawski [11].

The reduced modulus of a digon is not invariant under conformal mapping. The
following result gives a change-of-variable formula, see, e.g., [16]. Let the digon D
with the vertices at a and b be so that the limit (1) exists and the Stolz angles are
ϕa and ϕb . Suppose that there is a conformal map f(z) of the digon D (which
is conformal at a, b) onto a digon D′, so that there exist the angular limits f(a),
f(b) with the inner angles ψa and ψb at the vertices f(a) and f(b) which we also
understand as the supremum over all Stolz angles inscribed in D′ with the vertices at
f(a) or f(b) respectively. If the function f has the finite non-zero angular derivatives
f ′(a) and f ′(b), then ϕa = ψa, ϕb = ψb, and the reduced modulus (1) of D′ exists
and changes [3], [5], [13], [16] according to the rule

(2) m(f(D), f(a), f(b)) = m(D, a, b) +
1

ψa

log |f ′(a)|+ 1

ψb

log |f ′(b)|.



104 J. Milne Anderson and Alexander Vasil’ev

If we suppose, moreover, that f has the expansion

f(z) = w1 + (z − a)ψa/ϕa(c1 + c2(z − a) + . . . )

in a neighborhood of the point a, and the expansion

f(z) = w2 + (z − b)ψb/ϕb(d1 + d2(z − a) + . . . )

in a neighborhood of the point b, then the reduced modulus of D changes according
to the rule

(3) m(f(D), f(a), f(b)) = m(D, a, b) +
1

ψa

log |c1|+ 1

ψb

log |d1|.

Obviously, one can extend this definition to the case of vertices with infinite support.

3.2. Extremal partition by digons. Let S0 be a plane domain simply or
multiply connected that may have hyperbolic and parabolic boundary components.
A finite number γ = (γ1, . . . , γm) of simple arcs on S0 that are not freely homotopic
pairwise on S0 is called an admissible system of curves on S0 if these curves are
not homotopically trivial, start and finish at fixed points (or at the same point)
which can be either punctures or else points of hyperbolic components of S0, are
not homotopic to a point of S0 and do not intersect. A digon Dj on S0 with two
fixed vertices on its boundary (maybe the same point) is said to be of homotopy
type γj if any arc on S0 connecting two vertices is homotopic (not freely) to γj

within the admissible system.
A system of non-overlapping digons (D1, . . . , Dm) on S0 is said to be of homo-

topic type (γ1, . . . , γm) if (γ1, . . . , γm) is an admissible system of curves on S0 and
for any j ∈ {1, . . . , m} the domain Dj is of homotopic type γj.

We fix a height vector α = (α1, . . . , αm) and require the digons to be conformal
at their vertices and to satisfy the condition of compatibility of angles and heights,
i.e., for aj, bj on hyperbolic smooth components of S0, ϕaj

= παj/(
∑

k∈Iaj
αk),

j = 1, . . . ,m, ϕbj
= παj/(

∑
k∈Ibj

αk), where Iaj
(Ibj

) is the set of indices which refer
to the digons Dj with their vertices at aj (bj). With a given admissible system γ
and a height vector α we associate the collection D = (D1, . . . , Dm) of domains
of the homotopy type γ, satisfying the condition of compatibility of angles and
heights. Such a collection is said to be associated with γ and α. Let us assume
that αj > 0 and the digons (D1, . . . , Dm) be non-degenerate. A general theorem
(see [3, 5, 13, 16]) implies that any collection of non-overlapping admissible digons
D = (D1, . . . , Dk) associated with the admissible system of curves γ and the vector
α satisfies the following inequality

(4)
m∑

j=1

α2
jm(Dj, aj, bj) ≥

m∑
j=1

α2
jm(D∗

j , aj, bj),

with the equality sign only for D = D∗. Here each D∗
j is a strip domain in the trajec-

tory structure of a unique quadratic differential Q(ζ) dζ2, and there is a conformal
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map gj(ζ), ζ ∈ D∗
j that satisfies the differential equation

(5) α2
j

(
g′j(ζ)

gj(ζ)

)2

= 4π2Q(ζ), j = 1, . . . , m

and which maps D∗
j onto the strip C \ [0,∞). The critical trajectories of Q(ζ) dζ2

split S0 into at most m strip domains D∗ = (D∗
1, . . . , D

∗
m) associated with the

admissible system of curves and the height vector (some of D∗
j can degenerate),

satisfying the condition of compatibility of angles and heights.

4. Extremal problem for n fixed boundary points

The case of one fixed boundary point z = 1 is well-known and we refer the
reader to [12, 14, 16]. In the normlized form it can be formulated as follows. Let
φ be a conformal univalent map of U into U which is conformal at the boundary
point 1 and φ(0) = 0, φ(1) = 1, φ′(1) = β. Then,

|φ′(0)| ≥ 1

β2
.

The equality sign is attained only for the function φ∗ = pα, where pα(ζ) is the
classical conformal Pick map

pα(z) =
4αz(

1− z +
√

(1− z)2 + 4αz
)2 = αz + . . .

of U onto U \ (−1, −α/(1 +
√

1− α)2], α = 1/β2. The inequality, in particular,
implies that β ≥ 1 in the normalized case due to the Schwarz lemma.

Remark 4.1. We observe that consideration of non-univalent functions gives
no result. For example, φ(ζ) = ζ2 satisfies the conditions φ(1) = 1, φ′(1) = 2,
however φ′(0) = 0.

In view of the results [1, 7] it would be nice to have estimates from below for
the n-th derivative of a univalent function mapping U into U .

We turn to the case of n fixed boundary points. Let γ be an admissible curve
system on S0 = U \ {0} consisting of n arcs connecting 0 with fixed boundary
points ζ1, . . . , ζn. We consider a system of admissible digons D = (D1, . . . , Dn) with
vertices at 0 and ζ1, . . . , ζn with inner angles ϕzj

and ϕζj
= π respectively, where

zj is the vertex of Dj supported at 0. Given a vector α = (α1, . . . , αn) normalized
by

∑n
j=1 αj = 1, the condition of compatibility of angles and heights reads as

ϕzj
= 2παj. Any collection of non-overlapping admissible digons D associated with

the curve system γ and the condition of compatibility of angles and heights satisfies
the following inequality

(6)
n∑

j=1

α2
jm(Dj, zj, ζj) ≥

n∑
j=1

α2
jm(D∗

j , zj, ζj),
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for a fixed vector α, with the equality sign only for the extremal system of admissible
digons D∗ = (D∗

1, . . . , D
∗
n). We denote this minimum by M (D∗, γ, α).

The domains D∗
j are strip domains in the trajectory structure of a unique qua-

dratic differential

Q(ζ)dζ2 = A

∏n
k=1(ζ − eiδk)2

ζ2
∏n

j=1(ζ − ζj)2
dζ2.

The complex constant A must be positive because of the local trajectory structure
about 0 (non-vanishing angles of digons), and because of the expansion Q(ζ) =
A
ζ2 (1 + . . . ). There is a conformal map gj(z), z ∈ D∗

j satisfying the differential
equation

(7) α2
j

(
g′j(ζ)

gj(ζ)

)2

= 4π2A

∏n
k=1(ζ − eiδk)2

ζ2
∏n

j=1(ζ − ζj)2
, j = 1, . . . , n.

The function gj(z) maps D∗
j onto the strip C \ [0,∞).

The critical trajectories of Q(ζ) dζ2 split S0 into at most n strip domains asso-
ciated with the admissible system.

The mapping gj(ζ) has the expansion gj(ζ) = z1/αj(c1 + . . . ) about the origin.
Denote ζj = eiθj . Letting ζ → 0 in (7) within D∗

j for any j = 1, . . . , n, we obtain
that A = 1/4π2 and

∑n
k=1(δk − θk) is of mod(π). Without loss of generality we

assume the order θk−1 ≤ δk ≤ θk, wherehence

0 <

n∑

k=1

(δk − θk) ≤ θn − θ1 < 2π,

therefore it equals π. The mapping gj(ζ) has the expansion gj(ζ) = (z−eiθj)−2(d1 +
. . . ) about ζj within D∗

j . Letting ζ → ζj in (7) within D∗
j for j = 1, . . . , n, we obtain

a system of equations for δk

(8) 2αj =

∏n
k=1(e

iθj − eiδk)

eiθj
∏n

k 6=j(e
iθj − eiθk)

, j = 1, . . . , n.

Let φ : U → U is such that φ(0) = 0 and φ(ζj) = ζj for all j = 1, . . . , n. Then
φ(D∗) is an admissible system of digons for the same problem of extremal partition
satisfying the same condition of compatibility of heights and angles. Therefore,

(9)
n∑

k=1

α2
km(φ(Dk), 0k, ζk) ≥ M (D∗, γ, α).

The change-of-variable formulas (2,3) imply that
n∑

k=1

α2
km(φ(Dk), 0k, ζk)

= M (D∗, γ, α) +
n∑

k=1

α2
k

π
log φ′(ζk) +

1

2π
log |φ′(0)|.

(10)
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These two relations and the normalization of the vector α yield the inequality

(11) |φ′(0)| ≥ 1∏n
j=1(φ

′(ζj))
2α2

j

,

n∑
j=1

αj = 1.

The extremal configuration is unique and the functions w = φ∗(ζ), that give equality
to the inequality (9), satisfy the complex differential equation

(12)
dw

dζ
=

w
∏n

j=1(ζ − eiδj)
∏n

k=1(w − ζk)

ζ
∏n

j=1(w − eiδj)
∏n

k=1(ζ − ζk)
.

We choose the unique φ∗ satisfying the initial condition φ∗(0) = 0. The domain
φ∗(U) is the unit disk U minus at most n analytic arcs starting at the points eiδj

along the trajectories of the quadratic differential Q(w) dw2. Their length depends
on concrete values of the components of the vector α and on the derivatives φ′(ζj).
We summarize the above in the following theorem.

Theorem 4.1. Let φ be a conformal univalent map of U into U which is con-
formal at the boundary points ζ1 . . . , ζn and φ(0) = 0, φ(ζj) = ζj, φ′(ζj) = βj,
j = 1, . . . , n. Then for any non-negative vector α = (α1, . . . , αn), such that∑n

j=1 αj = 1, the following sharp inequality

|φ′(0)| ≥ 1∏n
j=1(βj)

2α2
j

,

holds. The equality sign is attained only for the function φ∗ defined by (12).

The minimum in the above inequality with respect to α is attained for

(13) αj =

(
log βj

n∑

k=1

1

log βk

)−1

.

This leads to an interesting inequality resembling the Cowen and Pommerenke result
[2] on the derivative at a boundary Denjoy–Wolff point.

Corollary 4.1. Let φ be a conformal univalent map of U into U which is
conformal at the boundary points ζ1 . . . , ζn and φ(0) = 0, φ(ζj) = ζj, φ′(ζj) = βj,
j = 1, . . . , n. Then the following sharp inequality

n∑
j=1

1

log βj

≤ −2

log |φ′(0)|

holds. The equality sign is attained only for the function φ∗ with α chosen as in
(13).

One may modify this result to the invariant form (wihout fixing 0) by a Möbius
transform, however this requires explicit calculation of moduli as follows.
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Taking into account (8) we see that
∏n

k=1(ζ − eiδk)∏n
j=1(ζ − eiθk)

= 1 + 2
n∑

k=1

αke
iθk

ζ − eiθk
,

and ∏n
k=1(ζ − eiδk)

ζ
∏n

j=1(ζ − eiθk)
= −1

ζ
+ 2

n∑

k=1

αk

ζ − eiθk
.

We take the square root in (7) fixing a branch and integrate the result. Finally, the
normalization implies that

gj(ζ) = eiκj
ζ1/αj

(
∏n

k=1(ζ − eiθk))
1/αj

.

The angle κj is chosen so that the arc of the unit circle which is the boundary of
the domain D∗

j is mapped into the real axis. Obviously, the reduced modulus of
the digon C \ [0,∞) with respect to its vertices 0 and ∞ vanishes. Applying the
change-of-variable formula (2) we calculate that

m(D∗
j , 0j, ζj) =

1

αjπ
log

∏

k 6=j

|eiθj − eiθk |αk .

Let us return back to the original problem of the extremal partition (6). Ap-
plying the Möbius transformation

M(ζ) =
ζ − z

1− ζz̄
,

and the change-of-variable formula (2), we get

m(D∗
j , zj, ζj) =

1

αjπ
log

(1− |z|2)αj+1/2

|1− eiθj z̄|2αj

∏

k 6=j

∣∣∣∣
eiθj − z

1− eiθj z̄
− eiθk − z

1− eiθk z̄

∣∣∣∣
αk

.

Analogously to (9, 10) we can prove the following theorem.

Theorem 4.2. Let φ be a conformal univalent map of U into U which is con-
formal at the boundary points ζ1 . . . , ζn and φ(ζj) = ζj, φ′(ζj) = βj, j = 1, . . . , n.
Then for any non-negative vector α = (α1, . . . , αn), such that

∑n
j=1 αj = 1, the

following sharp inequality

|φ′(z)| ≥ 1∏n
j=1(βj)

2α2
j

n∏
j=1

Fj(z)

Fj(w)
,

holds, where

Fj(z) =
(1− |z|2)αj(2αj+1)

|1− ζj z̄|4α2
j

(∏

k 6=j

∣∣∣∣
ζj − z

1− ζj z̄
− ζk − z

1− ζkz̄

∣∣∣∣
αk

)2αj

.

The equality sign is attained for a function φ∗ constructed analogously to that in
Theorem 4.1.
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The details are omitted. For the particular case of one fixed boundary point we
have the following corollary.

Corollary 4.2. Let φ be a conformal univalent map of U into U which is
conformal at the boundary point 1 and φ(1) = 1, φ′(1) = β. Then,

|φ′(z)| ≥ 1

β2

(1− |z|2)3

|1− z|4
|1− φ(z)|4

(1− |φ(z)|2)3
.

With a fixed z ∈ U and φ(z) = w, the equality sign is attained only for the function
φ∗ = B−1

w ◦ pα ◦Bz, where

Bz(ζ) =
1− z̄

1− z

ζ − z

1− ζz̄
,

and

α =
1

β2

|1− φ∗(z)|4(1− |z|2)2

|1− z|4(1− |φ∗(z)|2)2
.
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