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Abstract. In this paper, we study certain Fuchsian groups H (p1, . . . , pn) , called generalized
Hecke groups. These groups are isomorphic to

∏∗ n
j=1Zpj . Let Γ be a subgroup of finite index

in H (p1, . . . , pn) . By Kurosh’s theorem, Γ is isomorphic to Fr ∗
∏∗ k

i=1Zmi , where Fr is a
free group of rank r , and each mi divides some pj . Moreover, H2/Γ is Riemann surface. The
numbers m1, . . . , mk are branching numbers of the branch points on H2/Γ. The signature of Γ
is (g;m1 , . . . , mk; t) , where g and t are the genus and the number of cusps of H2/Γ, respectively.

A purpose of this paper is to consider two problems. First, determine the necessary and suf-
ficient conditions for the existence of a subgroup of finite index of a given type in H (p1, . . . , pn) .
We also extend this work to extended generalized Hecke groups H ∗(p1, . . . , pn) which are isomor-
phic to Dp1 ∗Z2 · · · ∗Z2 Dpn (amalgamated over Z2 ’s generated by reflections), where each Dpj is
a dihedral group of order 2pj .

The second problem is the realizability problem for the existence of a subgroup with a given
signature in H (p1, . . . , pn) . This is a special case of the Hurwitz problem about the realizability
of branched covers. Special cases of this work were also studied by Millington, Singerman, Hoare,
Edmonds, Ewing and Kulkarni. Our approach is based on constructing special Poincaré poly-
gons which are the same as fundamental domains for H (p1, . . . , pn) , H ∗(p1, . . . , pn) and their
subgroups.

1. Introduction

Suppose that integers p1, p2, . . . , pn are given, where each pj ≥ 2. The pur-
pose of this paper is to study the geometry and topology of a Fuchsian group
H (p1, . . . , pn), called a generalized Hecke group, and its certain extension
H ∗(p1, . . . , pn), called an extended generalized Hecke group. As an abstract group,
H (p1, . . . , pn) is isomorphic to

∏∗ n

i=1Zpi , and H ∗(p1, . . . , pn) is isomorphic to
Dp1 ∗Z2 · · · ∗Z2 Dpn (amalgamated over Z2 ’s generated by reflections), where
throughout the paper

∏∗denotes a free product of groups, each Zpj is a finite
cyclic group of order pj , and each Dpj is a dihedral group of order 2pj ; cf. Sec-
tion 2.

Let Γ be a subgroup of finite index in H (p1, . . . , pn). Then H2/Γ is a
Riemann surface. Let g and t be the genus and the number of cusps of H2/Γ
respectively, and let m1, . . . ,mk be the branching numbers of the branch points
on H2/Γ. The signature of Γ is (g;m1, . . . ,mk; t).

It follows from Kurosh’s theorem that a subgroup of a generalized Hecke group∏∗ n

i=1Zpi is isomorphic to F ∗
(∏∗ k

i=1Zmi

)
, where F is a free group, and each
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mj divides some pi , for j = 1, . . . , k . A group
∏∗ n

i=1Zpi may not always contain
a subgroup of a given type. For instance, Z2 ∗ Z2 ∗ Z2 ∗ Z2 does not embed in
Z3 ∗ Z6 as a subgroup of index 2. Indeed, it is easy to see that there is a unique
normal subgroup of index 2 in Z3 ∗ Z6 , and it is isomorphic to Z3 ∗ Z3 ∗ Z3 .

Millington [11] investigated the existence of subgroups with given signatures
in the modular group which is isomorphic to Z2 ∗ Z3 . We state Millington’s
theorem as follows.

Theorem 1.1. Let d , k1 , k2 , g , t be nonnegative integers, and t, d ≥ 1 . If
the Riemann–Hurwitz relation

d = 3k1 + 4k2 + 12g + 6t− 12

holds, the modular group contains a subgroup of index d and with a signature
(g; 2, . . . , 2︸ ︷︷ ︸

k1

, 3, . . . , 3︸ ︷︷ ︸
k2

; t) .

This result was partially extended. A group Γ can be embedded as a subgroup
of index d in Zp1 ∗ Zp2 , where p1, p2 are distinct primes if and only if the Euler
characteristic condition is satisfied, i.e. χ(Γ) = dχ(Zp1 ∗ Zp2) [6, Theorem 5.1],
where χ is the Euler characteristic of a group in the sense of Wall; cf. [15]. Notice
that this result is partial since we do not know whether the group can be realized
as a Fuchsian group with a prescribed signature, subject to Euler characteristic
(that is the same as Riemann–Hurwitz) condition. However when p1, . . . , pn are
not distinct primes, the Riemann–Hurwitz condition is not sufficient to embed a
group as a subgroup of finite index in

∏∗ n

i=1Zpi .
In [6], Kulkarni derived a further necessary condition, a diophantine condition,

and showed that this condition together with the Riemann–Hurwitz condition is
also sufficient to embed a group Fr ∗

∏∗
mZm in

∏∗ n

i=1Zpi as a subgroup of
finite index, where henceforth Fr denotes a free group of rank r . We describe this
theorem as follows.

Theorem 1.2. Let k, r be nonnegative integers. Let Γ =
∏∗ n

i=1Zpi , and

Φ = Fr ∗
∏∗ k

i=1Zmi , where each mi divides some pj . Then Φ can be realized as
a subgroup of Γ of index d if and only if the following conditions are satisfied:

(i) (The Riemann–Hurwitz condition)

k∑
i=1

1
mi

− (k + r) + 1 = d

( n∑
i=1

1
pi

− n+ 1
)
.

(ii) (The diophantine condition) Let m0 = 1 , and let m1, . . . ,ms be the
maximal set of distinct mi , where each mj , 1 ≤ j ≤ s , occurs bj times. Set

εij =
{
0 if mj � | pi,
1 if mj | pi,

δij =
pi
mj

εij .
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Then the system
n∑

i=1

εijxij = bj , j = 1, . . . , s,

s∑
j=0

δijxij = d, i = 1, . . . , n

has a solution for xij in nonnegative integers.

Moreover Kulkarni [7] extended Millington’s theorem to Zp1 ∗ Zp2 .

Theorem 1.3. Let k, g, t, r be nonnegative integers, where t ≥ 1 , r =
2g+ t−1 . Let Γ = Zp1 ∗Zp2 , and Φ = Fr ∗

∏∗ k
i=1Zmi , where each mi divides p1

or p2 . Then Φ can be realized as a subgroup of Γ of index d and with a signature
(g;m1, . . . ,mk; t) if and only if the following conditions are satisfied:

(i) (The Riemann–Hurwitz condition)

k∑
i=1

1
mi

− (k + r) + 1 = d

(
1
p1
+
1
p2

− 1
)
.

(ii) (The diophantine condition) Let m0 = 1 , and let m1, . . . ,ms be the
maximal set of distinct mi , where each mj , 1 ≤ j ≤ s , occurs bj times. Set

εij =
{
0 if mj � | pi,
1 if mj | pi,

δij =
pi
mj

εij .

Then the system
ε1jx1j + ε2jx2j = bj , j = 1, . . . , s,

s∑
j=0

δijxij = d, i = 1, 2,

has a solution for xij in nonnegative integers.

A motivation of this paper was to study realizability of signatures by sub-
groups of finite index in H (p1, . . . , pn) considered as a Fuchsian group.

A noncocompact Fuchsian group Γ is a free product of cyclic groups. A sys-
tem of generators for Γ is said to be independent if the group is a free product
of cyclic subgroups generated by elements in the generating system. This notion
is due to Rademacher; cf. [12]. A fundamental domain P for Γ is called an ad-
missible fundamental domain for Γ if the side pairings of P is an independent
system of generators for Γ; cf. [7]. A fundamental domain is in general not ad-
missible. Indeed, the usual fundamental domain for the modular group and the
well-known fundamental domain constructed by Fricke for congruence subgroups
are not admissible. In Section 2, we introduce a special kind of Poincaré polygon,
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called a Hecke polygon, which is an admissible fundamental domain for the group
generated by the side pairings of it.

There is a correspondence between Hecke polygons and subgroups of finite
index in H (p1, . . . , pn). Each subgroup of finite index in H (p1, . . . , pn) admits
an admissible fundamental domain which is a Hecke polygon. From this result, we
give new proofs of Theorems 1.2 and 1.3 by constructing a Hecke polygon. Mean-
while the diophantine condition (which is the same as the integrality condition of
Theorem 1.4) is interpreted geometrically as the relationship between the index of
a subgroup and the number of Ωj -polygons of a Hecke polygon; cf. Section 3. In
our set-up Theorem 1.2 is restated as follows.

Theorem 1.4. Let k0 = 0, k1, . . . , kn, r be nonnegative integers, where ki ≤
ki+1, for i = 0, . . . , n− 1 . Let Γ = Fr ∗

∏∗ n

j=1

∏∗ kj

i=kj−1+1Zpj/mi
, where mi | pj ,

i = kj−1+1, . . . , kj , j = 1, . . . , n . Then Γ can be embedded in H (p1, . . . , pn) as
a subgroup of index d if and only if the following conditions hold:

(i) (The Riemann–Hurwitz condition)

n∑
j=1

kj∑
i=kj−1+1

mi

pj
− (kn + r) + 1 = d

( n∑
j=1

1
pj

− n+ 1
)
.

(ii) (The integrality condition) The numbers s1, . . . , sn satisfying

sjpj +
kj∑

i=kj−1+1

mi = d, j = 1, . . . , n,

are nonnegative integers.

In particular, if p1, . . . , pn are distinct primes, the integrality condition re-
duces to d ≥ kj , j = 1, . . . , n , where kj is the number of copies of Zpj ’s in Γ (see
Corollary 5.2).

In Section 4, we study a special kind of a NEC (non-euclidean crystallo-
graphic) group H ∗(p1, . . . , pn) in which H (p1, . . . , pn) is a subgroup of index 2.

The algebraic structure of a NEC group with noncompact quotient space was
determined by Macbeath and Hoare [9]. It follows that each subgroup of finite
index in Dp1 ∗Z2 · · · ∗Z2 Dpn is isomorphic to Fr ∗

∏∗
mZm ∗

∏∗
i(Dxi1 ∗Z2 · · · ∗Z2

Dxiki
) ∗

∏∗
jEj , where each m divides some pj , each xij divides some pl , and

each Ej has a presentation

〈yj , aj1, . . . , ajsj | aj1yjajsjy
−1
j = a2

jl = a2
jl+1 = (ajlajl+1)ujl = 1, l = 2, . . . , sj−1〉.

We extend Theorem 1.4 in the case of subgroups of finite index in H ∗(p1, . . . , pn).
In this case, the necessary and sufficient conditions are still called the Riemann–
Hurwitz and diophantine conditions (see Theorem 4.2). When p1, . . . , pn are dis-
tinct primes, the diophantine condition can be stated in a more concise way (see
Theorem 5.1).
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Singerman [14] gave a permutation-theoretic approach to the realizability
problem for signatures of subgroups of finitely generated Fuchsian groups. A
generalization to NEC groups was done by Hoare [4]. Singerman’s theorem is as
follows.

Theorem 1.5. Suppose that Γ has a presentation〈
a1, b1, . . . , ag, bg , x1, . . . , xr, f1, . . . , ft | xm1

1 = · · · = xmr
r

=
g∏

i=1

[ai, bi]
r∏

j=1

xj

t∏
k=1

fk = 1
〉

with a signature (g;m1, . . . ,mr; t) . Then Γ contains a subgroup Φ of index d
with a signature (h;n11, n12, . . . , n1ρ1 , . . . , nr1, nr2, . . . , nrρr ; s) if and only if there
exists a finite permutation group G transitive on d points, and an epimorphism
θ: Γ→ G satisfying the following conditions:

(i) The permutation θ(xj ) has precisely ρj disjoint cycles of lengths mj/nj1 ,
. . . ,mj/njρj .

(ii) If δ(f) denotes the number of cycles in the permutation θ(f) , then s =∑t
i=1 δ(fi) .

In Section 6, we show how to associate a system of permutations to a Hecke
polygon such that the signature of the group generated by the side pairings of this
polygon can be determined from the action of those permutations. The permu-
tations which we construct (in the special case of generalized Hecke groups) are
different from the ones in Singerman’s theorem. In particular, we use permutations
to construct the appropriate Hecke polygon, and in fact get an explicit geometric
realization of the corresponding surface.

It is of interest to note that the Riemann–Hurwitz and diophantine conditions
are not sufficient for the existence of a subgroup with a prescribed signature in
H (p1, . . . , pn) if n ≥ 3. An obvious additional necessary end-condition for the
existence of a subgroup Γ of index d in a group is that the number t of cusps
of the quotient space H2/Γ is at most d . This condition does not follow from
the Riemann–Hurwitz or diophantine condition; cf. the example in Section 7. The
realizability problem for the existence of a subgroup of H (p1, . . . , pn) with a
given signature for any possible t ≤ d is still open. Indeed even for torsion
free subgroups, this problem appears to be difficult. Curiously, in the cocompact
case for the torsion free subgroups, only Riemann–Hurwitz condition is sufficient;
cf. [2]. In our case, the result in [2] implies that if n ≥ 3 and t | d , there exists
a torsion free subgroup of index d whose corresponding surface has t cusps; cf.
Theorem 7.2. Here we use a different approach and consider the realizability of
torsion free subgroups with t ≤ d . Special cases are dissussed in Section 7. Some
further cases for groups with torsions in the cocompact case are dealt with in [3].
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There is a close relation between the Hurwitz problem on realizability of a
branched covering of a sphere and the problem of the existence of a subgroup of fi-
nite index in H (p1, . . . , pn) [5]. Given a subgroup Γ of index d in H (p1, . . . , pn),
let πΓ: H2 → H2/Γ be the natural projection. Then πΓ and πH (p1,...,pn) induce
a branched covering φ: H2/Γ → H2/H (p1, . . . , pn) of degree d of a punctured
sphere H2/H (p1, . . . , pn). In particular, in any of the cases (i) p1 = pn = 2,
p2 = · · · = pn−1 = p (ii) n = 4, pj ≥ 4, (j = 1, . . . , 4) (iii) n = 5, pj ≥ 3,
(j = 1, . . . , 5) (iv) n ≥ 6, pj ≥ 2, (j = 1, . . . , n), the covering space H2/Γ of
genus g with t cusps of a once-punctured sphere H2/H (p1, . . . , pn), branched
at {x1, . . . , xk} to order {2, . . . , 2, p . . . , p} for case (i) and to order {p1, . . . , p1,
. . . , pn, . . . , pn} for case (ii), (iii), (iv), can be realized for any t ≤ d ; cf. Corol-
lary 7.4 and Corollary 7.8.

I am grateful to Professor Ravi Kulkarni for his assistance on this paper. I
would also like to thank Professor Linda Keen and Professor Frederick Gardiner
for their encouragement.

2. Hecke polygons

Let p1, p2, . . . , pn , be integers, where each pj ≥ 2. For each j = 1, . . . , n− 1,
let Cj be a circle |z − aj | = δj , where aj ∈ R , aj < aj+1 , and δ2

j + δ2
j+1 ≤

(aj − aj+1)2 < (δj + δj+1)2 . Then Cj intersects only Cj−1 and Cj+1 , for j =
2, . . . , n − 2. Suppose that Cj−1 and Cj intersect at a point bj ∈ H2 with
an angle π/pj , for j = 2, . . . , n − 2. Let b1 = a1 − δ1e

−πi/p1 and bn = an−1 +
δn−1e

πi/pn . Let D∗ be the hyperbolic polygon with vertices at b1, . . . , bn , and ∞ .
An extended generalized Hecke group H ∗(p1, . . . , pn) is a discrete group generated
by the reflections in the edges of D∗ . The stabilizers of each vertex bj and each
edge of D∗ are Dpj and Z2 respectively, where Z2 ’s are reflections of the dihedral
groups Dpj , i.e., the elements in the nonidentity coset of the rotation group Zpj .
Therefore H ∗(p1, . . . , pn) is isomorphic to Dp1 ∗Z2 · · · ∗Z2 Dpn .

Let H (p1, . . . , pn) be the subgroup of H ∗(p1, . . . , pn), called a general-
ized Hecke group, which consists of all orientation-preserving transformations in
H ∗(p1, . . . , pn). Then H (p1, . . . , pn) is isomorphic to

∏∗ n

j=1Zpj .
We will need the following definitions. The elements of the H ∗(p1, p2, . . . , pn)-

orbits of bj and ∞ are called the bj -vertices and the cusps, respectively, j =
1, . . . , n . Suppose that Cj and the hyperbolic line through aj and ∞ intersect at a
point cj , for j = 1, . . . , n−1 (see Figure 1). The elements of the H ∗(p1, . . . , pn)-
orbits of cj ’s are called the cj -vertices. The elements of the H ∗(p1, . . . , pn)-
orbits of the edges joining cj to ∞ are called the cj -edges. The elements of
the H ∗(p1, . . . , pn)-orbits of the edges joining bj to ∞ are called bj -edges. The
elements of H ∗(p1, . . . , pn)-orbits of the edges joining bj to cj and cj to bj+1 re-
spectively, for j = 1, . . . , n , are called ej -edges and fj -edges respectively. Each of
the ej - and fj -edges has finite length, and each of the bj -edges has infinite length.
The hyperbolic line joining aj to ∞ consists of two cj -edges, for j = 1, . . . , n−1.
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a1 a2

b1
b2

b3

∆∗
1 ∆̃∗

1
∆∗

2 ∆̃∗
2

c1

c2

Figure 1. A fundamental polygon D∗ for H ∗(p1, p2, p3) .

Its H ∗(p1, . . . , pn) translates are called the cj -lines.
The H ∗(p1, . . . , pn) translates of the polygon with vertices at {b1, c1,∞} ,

{c1, b2, c2,∞} , . . . , {cn−2, bn−1, cn−1,∞} and {cn−1, bn,∞} , respectively, are
called the Ω∗

j -polygons. The H (p1, . . . , pn) translates of the polygon with vertices
at {b1, a1,∞} , {a1, b2, a2,∞} , . . . , {an−2, bn−1, an−1,∞} and {an−1, bn,∞} , re-
spectively, are called the Ωj -polygons. If each pj is greater than 2, then Ω1 - and
Ωn -polygons are triangles, and the rest of Ωj -polygons are quadrilaterals.

Let ∆∗
j and ∆̃

∗
j be triangles with vertices at {bj , cj ,∞} and {cj, bj+1,∞} ,

where j = 1, . . . , n − 1. For j = 1, . . . , n − 1, let ∆j = ∆∗
j ∪ σj(∆∗

j ) and ∆̃j =

∆̃∗
j ∪ σj ˜(∆

∗
j ), where σj is a reflection in the circle Cj .

A usual construction of a fundamental domain for H (p1, . . . , pn) would be
D∗ ∪ σ(D∗), where σ is a reflection in an edge of D∗ . But we find it more
convenient to take D =

⋃n−1
j=1 (∆j ∪ ∆̃j) as a fundamental domain (see Figure 2).

a1 a2

b1
b2

b3
∆1 ∆̃1 ∆2 ∆̃2

c1

c2

Figure 2. A fundamental polygon for H (p1, p2, p3) .

A Hecke polygon is defined to be a convex polygon P whose boundary is a
finite union of cj -lines and bj -edges satisfying the following conditions:

S1 . Each cj -line in ∂P is paired to another cj -line in ∂P such that one of
them is a side of an Ωj -polygon in P , and the other is a side of an Ωj+1 -polygon
in P .

S2 . The bj -edges in ∂P come in pairs. The edges of each pair meet at a
bj -vertex with an interior angle 2kπ/pj , where k | pj , and are identified.

S3 . a1, . . . , an−1 , and ∞ are among the vertices of P .
The main point about Hecke polygons is the following theorem.

Theorem 2.1. Let P be a Hecke polygon, and let ΓP be the subgroup of
H (p1, . . . , pn) generated by the side pairing transformations of P . Then P is
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an admissible fundamental domain for ΓP . Conversely, every subgroup of finite
index in H (p1, . . . , pn) admits an admissible fundamental domain which is a Hecke
polygon.

Proof. The argument is similar to the one in Theorem 3.3 [7]. Suppose that
P is a Hecke polygon and that ΓP is the subgroup of H (p1, . . . , pn) generated
by the side pairing transformations of P . It follows from the Poincaré polygon
theorem [10, Section IV.H] that the set S of the side pairing transformations
is an independent set of generators of ΓP , that is, ΓP =

∏∗
f∈S〈f〉 . So the

fundamental polygon P is an admissible fundamental domain for ΓP .
Conversely, suppose that Γ is a subgroup of finite index in H (p1, . . . , pn).

Let T ∗ be the tessellation of H2 whose tiles are H ∗(p1, . . . , pn) translates of D∗ .
Let ϕ: H2 → H2/Γ be the canonical projection. Since Γ preserves T ∗ , we have
an induced tessellation T ∗

Γ of H2/Γ. The ϕ -images of cj -vertices, bj -vertices,
cj -edges, bj -edges, ej - and fj -edges will again be called cj -vertices, bj -vertices,
cj -edges, bj -edges, ej - and fj -edges, respectively, in H2/Γ. Let E be the union
of the ej - and fj -edges in H2/Γ. Consider E as a graph whose vertices are
the cj -vertices and bj -vertices in H2/Γ, and whose edges are the ej - and fj -
edges in H2/Γ. Note that each cj -vertex is of valence 2, and each bj -vertex is
of valence 1 or k (respectively 2 or 2k ), where k | pj , if j = 1, n , (respectively
j = 2, . . . , n− 1).

Since the union of the ej - and fj -edges in H2 is connected, so is E . Let
T be a maximal tree in E . Let A be the union of all the cj -edges in H2/Γ at
the cj -vertices of valence 1 and all the bj -edges at the bj -vertices of valence k
and 2k , where k | pj , k �= pj , in T . Make H2/Γ into a polygon P in H2 by
cutting A such that a1, . . . , an−1, and ∞ are among the vertices of P . For each
cj -vertex u and each bj -vertex v in A , there is a pair of cj -lines and a pair of
bj -edges adjacent to u and v , respectively. Correspondingly, we obtain a pair
of cj -lines (respectively bj -edges) on ∂P which are paired. Hence P is a Hecke
polygon which is a fundamental domain for Γ.

3. A new proof of an extension of Kurosh’s theorem

We now give a new proof of an extension of Kurosh’s theorem to the groups
H (p1, . . . , pn). We mean by a (k + 2)-gon (respectively 2k + 2-gon) centered at
a bj -vertex a (k+2)-gon (respectively (2k+2)-gon) consisting of k Ωj -polygons
with a common bj -vertex which attach to each other along the bj -edges, where
k | pj , j = 1, n (respectively j = 2, . . . , n − 1), provided that p1, pn �= 2 (see
Figure 3).

Proof of Theorem 1.4. Let Γ be a subgroup of index d in H (p1, . . . , pn).
Let P be the Hecke polygon for Γ, and let sj be the number of ideal pj -gons
or 2pj -gons centered at bj -vertices in P . Then sjpj +

∑kj

i=kj−1+1 mi is the total
number of Ωj -polygons in P , for j = 1, . . . , n . Hence the conditions (i) and (ii)
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0

e
2πi
3

e
πi
6

Figure 3. A 5-gon centered at eπi/6 for a group H ∗(6, 3) .

follow directly from the Gauss–Bonnet theorem and the geometric interpretation
of the Hecke polygon P .

Conversely, suppose that conditions (i) and (ii) hold. Substituting sj +∑kj

i=kj−1+1mi/pj for d/pj , j = 1, . . . , n in condition (i), we have

r = (n − 1)d − kn −
n∑

j=1

sj + 1.

Without loss of generality, we may assume that s1 ≥ sn and sj ≥ 2sn − 1,
for all j �= 1, n . We shall find a Hecke polygon P for Γ which consists of sj ideal
pj -gons or 2pj -gons (an ideal polygon inH2 is a hyperbolic polygon with vertices
at the circle at infinity R∪{∞}), and the (mi+2)-gon or (2mi+2)-gon centered
at a bj -vertex, for i = kj−1+1, . . . , kj , and j = 1, . . . , n , such that a subgroup of
H (p1, . . . , pn) generated by the side pairing transformations of P is Γ.

Start with an ideal p1 -gon Q1 centered at b1 . Then attach an ideal 2p2 -gon
to Q1 along the c1 -line through ∞ and obtain a new polygon Q2 . Next attach
an ideal 2p3 -gon to Q2 along the c2 -line through ∞ . Continuing in this way,
after 2(n − 1)sn − n + 2 steps we obtain a polygon P0 whose boundary consists
of cj -lines and which contains sn Ω1 -polygons, sn Ωn -polygons, and (2sn − 1)
Ωj -polygons, for j = 2, . . . , n− 1.

Now there are s1 − sn ideal p1 -gons, sj − 2sn + 1 ideal 2pj -gons, for j =
2, . . . , n− 1, and the (mi + 2)-gon or (2mi + 2)-gon centered at a bj -vertex, for
i = kj−1 + 1, . . . , kj , j = 1, . . . , n , to be attached. For each j = 1, . . . , n− 1, the
number of cj -lines on the boundary of those polygons and P0 that are sides of
Ωj -polygons or Ωj+1 -polygons is{

sn(pj − 2) + 1 + (sj − sn)p1 +
∑kj

i=kj−1+1 mi, j = 1, n,

(2sn − 1)(pj − 1) + (sj − 2sn + 1)pj +
∑kj

i=kj−1+1 mi, j �= 1, n,

=
{
d− 2sn + 1, j = 1, n,
d− 2sn + 1, j �= 1, n.

Hence, after attaching those

s1 − sn +
n−1∑
j=2

(sj − 2sn + 1) +
n∑

j=1

(kj − kj−1) = kn +
n∑

j=1

sj − 2(n− 1)sn + n− 2
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polygons to P0 , we have

(n−1)(d−2sn+1)−
[
kn+

n∑
j=1

sj−2(n−1)sn+n−2
]
= (n−1)d−kn−

n∑
j=1

sj+1 = r

pairs of cj -lines, and each pair consists of a side of an Ωj -polygon and a side of an
Ωj+1 -polygon on the boundary. Therefore we obtain a convex polygon P whose
boundary is the union of kj − kj−1 pairs of bj -edges making an interior angle
2miπ/pj , where i = kj−1 + 1, . . . , kj , j = 1, . . . , n , and r pairs of cj -lines.

Each pair of bj -edges of an interior angle 2miπ/pj are identified. Each pair of
2r cj -lines are identified. Now P becomes a Hecke polygon. Then a subgroup of
H (p1, . . . , pn) generated by the side pairing transformations of P is isomorphic
to Γ.

For the case n = 2 in Theorem 1.4, one can pair the r pairs of cj -lines on
∂P as in the proof with the desired patterns. We state this result as a corollary
of Theorem 1.4.

Theorem 3.1. Let k0 = 0 , k1 , k2 , g , t , r be nonnegative integers, where

k1 ≤ k2 , t ≥ 1 , and r = 2g+ t−1 . Let Γ = Fr ∗
∏∗ 2

j=1

∏∗ kj

i=kj−1+1Zpj/mi
, where

mi | pj , i = kj−1 +1, . . . , kj , j = 1, 2 . Then Γ can be embedded in H (p1, p2) as
a subgroup of index d and with a signature(

g;
p1

m1
, . . . ,

p1

mk1

,
p2

mk1+1
, . . . ,

p2

mk2

; t
)

if and only if the following conditions hold:
(i) (The Riemann–Hurwitz condition)

2∑
j=1

kj∑
i=kj−1+1

mi

pj
− (k2 + r) + 1 = d

(
1
p1
+
1
p2

− 1
)
.

(ii) (The integrality condition) The numbers s1 , s2 satisfying

sjpj +
kj∑

i=kj−1+1

mi = d, j = 1, 2,

are nonnegative integers.
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4. Subgroups of finite index in H ∗(p1, . . . , pn)

In this section we determine the necessary and sufficient conditions for the
existence of a subgroup of finite index of a given type in H ∗(p1, . . . , pn).

Suppose that Γ∗ is a subgroup of finite index in H ∗(p1, . . . , pn) containing a
reflection. Then SΓ∗ = H2/Γ∗ is a (possibly nonorientable) surface with boundary
(see Figure 4). The boundary ∂SΓ∗ is formed by the projection of the fixed lines
of reflections in Γ∗ . Also, ∂SΓ∗ contains a corner when the fixed lines of two
reflections in Γ∗ intersect. Each component C of ∂SΓ∗ is the projection of a
simple curve C̃ in H2 which is either a finite union of ej - and fj -edges or the
union of two of the bj -edges and a finite number of the ej - and fj -edges, where
any two consecutive edges intersect at a bj -vertex v , and make an angle kπ/pj ,
where k | pj . If v is a center of a rotation which is the product of two reflections
in Γ∗ , the stabilizer of v is isomorphic to a dihedral group Dpj/k .

∗ ∗

∗
∗

∗
∗

∗

Figure 4. The marked point is an elliptic fixed point if it is in the interior, and a center of a
rotation which is a product of two reflections if it is on the boundary.

We generalize the construction of Hecke polygons to extended Hecke polygons.

Definition. An extended Hecke polygon is a convex hyperbolic polygon P ∗

of finite area containing a1 and ∞ as vertices such that each component of ∂P ∗

is of one of the following forms:
(i) a cj -line;
(ii) a pair of bj -edges making an interior angle 2kπ/pj , where k | pj ;
(iii) a simple curve which is the union of two of the bj -edges and a finite number

of the ej - and fj -edges,
satisfying the following conditions:

S∗
1 . Each cj -line which is a side of an Ωj -polygon in P ∗ is paired to another

cj -line which is a side of an Ωj -polygon in P ∗ by an orientation-preserving or
reversing transformation in H ∗(p1, . . . , pn).

S∗
2 . The bj -edges of each pair as in (ii) are paired by a transformation in

H (p1, . . . , pn).
S∗

3 . Each of the ej - and fj -edges as in (iii) is paired to itself by a reflection
in H ∗(p1, . . . , pn).
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S∗
4 . Each of the bj -edges as in (iii) is paired to itself by a reflection or to

the other bj -edge on the same component of ∂P by an orientation-preserving
transformation in H ∗(p1, . . . , pn).

Note that the group H ∗(p1, . . . , pn) may contain a subgroup with a funda-
mental domain whose boundary has only one component, and contains only one
cusp ∞ as a vertex. Such a fundamental domain is not an extended Hecke poly-
gon. In this case, this subgroup is isomorphic to Dm1 ∗Z2 · · · ∗Z2 Dmk , where each
mi divides some pj and Z2 ’s are generated by reflections.

Theorem 4.1. Let P ∗ be an extended Hecke polygon, and let ΓP∗ be the
subgroup of H ∗(p1, . . . , pn) generated by the side pairing transformations of P ∗ .
Then P ∗ is a fundamental domain for ΓP∗ , and ΓP∗ is a subgroup of finite index
in H ∗(p1, . . . , pn) which is isomorphic to a free product of the groups Z, Zr , and
Dm1 ∗Z2 · · · ∗Z2 Dmk , where r , and each mi divide some pj . Conversely, every
subgroup of finite index in H ∗(p1, . . . , pn) but �= Dm1 ∗Z2 · · · ∗Z2 Dmk , where
each mi divides some pj , admits an extended Hecke polygon.

Proof. The proof is similar to that of Theorem 2.1. The first assertion follows
from the Poincaré polygon theorem.

Suppose that Γ is a subgroup of finite index in H ∗(p1, . . . , pn). Let E ∗ be
the union of ej - and fj -edges in H2/Γ. Let T ∗ be the maximal tree in E ∗ . Let
A∗ be the union of all the cj -edges in H2/Γ at the cj -vertices of valence 1 and all
the bj -edges at the bj -vertices of valence k and 2k in T ∗ , where k | pj , k �= pj .
Now as in the argument of Theorem 2.1, cut H2/Γ open along the edges in A∗

into a set which is isometric to a simply connected convex hyperbolic polygon
P and then obtain an extended Hecke polygon which is a fundamental domain
for Γ.

We take a positive orientation on H2 to be the usual counterclockwise ori-
entation on H2 . Suppose that P ∗ is an extended Hecke polygon for Γ∗ . Let C
be a boundary component of SΓ∗ = H2/Γ∗ which is the projection of a simple
curve C̃ on ∂P ∗ . Suppose that {w1, w2, . . . , wk} is a set of the bj -vertices on C̃
in positive order on ∂P ∗ such that w1 and wk are on the infinite edges. Note
that for each j , no two bj -vertices are adjacent along C̃ . Let π: H2 → H2 be
the projection map. Suppose that the corresponding stabilizer of wj is Dmj . If
π(w1) �= π(wk), the ordered set (m1,m2, . . . ,mk) is called a boundary cycle on
C̃ for P ∗ . If π(w1) = π(wk), the ordered set (m1,m2, . . . ,mk) is called a closed
boundary cycle on C̃ for P ∗ . Each mj is called a branching number on the bound-
ary. If wi is a bj -vertex, the integer pj/mi is the number of Ω∗

j -polygons in P ∗

with a vertex at wi .
Suppose that (y1/x1, y2/x2, . . . , yk/xk) is a boundary cycle of Γ∗ , where xi |

yi and yi ∈ {p1, . . . , pn} . Let yi = pj , for some j . Then from the property of a
Hecke polygon for Γ∗ we have the following results.

(i) y1, yk ∈ {p1, pn} .
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(ii) If k = 1, then x1 is an even number, and if k > 1, then x1 and xk are
odd numbers.

(iii) If xi is an odd number, then yi−1 = pj−1 , yi+1 = pj+1 , or yi−1 = pj+1 ,
yi+1 = pj−1 .

(iv) If xi is an even number, then yi−1 = yi+1 = pj−1 , or yi−1 = yi+1 = pj+1 .
The above results (i)–(iv) are also true for a close boundary cycle (y1/x1 ,

y2/x2, . . . , yk/xk) except for (i) which now becomes y1 = yk ∈ {p1, pn} .
Suppose that

Γ = Fr ∗
∏∗n

α=1

∏∗kα

i=kα−1
Zpα/mi

∗
∏∗h0

i=1

∏∗ui

j=1(Dyij1/xij1 ∗Z2 · · · ∗Z2 Dyijaij
/xijaij

) ∗
∏∗h

i=h0+1Ei

is a subgroup of index d in H ∗(p1, . . . , pn), where Ei has a presentation

〈fi, vi1, . . . , viai1 |(vi1fiviai1f
−1
i )yi1ai1 /xi11+xi1ai1 = v2

il

= v2
il+1 = (vilvil+1)yi1l/xi1l , l = 2, . . . , ai1 − 1〉,

xijl | yijl , yijl ∈ {p1, . . . , pn} , for all i, j, l , and (xi11 + xi1ai1 ) | yi11 , for i =
h0 + 1, . . . , h .

Suppose that P is a fundamental polygon for Γ which is an extended Hecke
polygon. Let Bij = (yij1/xij1, yij2/xij2, . . . , yijaij/xijaij ), for i = 1, . . . , h , and
j = 1, . . . , ui . For each i, j , we will construct a polygon Rij whose boundary
contains a corresponding boundary component for Bij . For instance, assume that
Bij = (p1/xij1 , p2/xij2, . . . , pn/xijn). Start with an (xij1 + 2)-gon Q1 centered
at a b1 -vertex w1 such that ∂Q1 has precisely one component C1 consisting of
two b1 -edges (respectively one b1 -edge, one e1 -edge and one c1 -edge) if n = 1
(respectively n > 1). If n > 1, attach a (2xij + 2)-gon Q2 centered at a b2 -
vertex w2 to Q1 along a c1 -edge on C1 such that the vertices w1 and w2 are on
∂(Q1 ∪ Q2) in positive order. Continuing in this way, we obtain a polygon Rij

such that the vertices wij , w1, w2, . . . , wn, w
′
ij are on ∂Rij in positive order, where

wij and w′
ij are the cusps on the b1 -edge through w1 and the bn -edge through

wn , respectively. Note that ∂Rij contains cj -lines through wij and w′
ij . Hence

we can think of P as a polygon P −
⋃h

i=1

⋃ui

j=1 Rij attached to Rij along the
cj -line through wij or w

′

ij , i = 1, . . . , h , j = 1, . . . , ui .
Let k0 = 0. Apply the Gauss–Bonnet theorem to P . It follows that

d

2

( n∑
α=1

1
pα

− n+ 1
)
=

n∑
α=1

kα∑
i=kα−1+1

mi

pα
+

∑
i,j,l

xijl
2yijl

−
(
kn +

1
2

h∑
i=1

ui∑
j=1

aij +
1
2

h∑
i=1

ui + r

)
+ h− h0 + 1.
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On the other hand, for each α = 1, . . . , n , since the number of Ω∗
α -polygons

is equal to d , there exists a nonnegative integer sα such that

2sαpα +
kα∑

i=kα−1+1

2mi +
h∑

i=1

ui∑
j=1

∑
l∈Φij(α)

xijl = d

where Φij(α) = {l | yijl = pα, 1 ≤ l ≤ aij} .
Conversely, all the above equalities are also sufficient for a subgroup to exist

in H ∗(p1, . . . , pn). We will use the previous notations to describe and prove this
result.

Theorem 4.2. Let k0 = 0, k1, . . . , kn, h0, h, r be nonnegative integers, where
ki ≤ ki+1 , for i = 1, . . . , n , and h0 ≤ h . Suppose that

Γ = Fr ∗
∏∗n

α=1

∏∗kα

i=kα−1
Zpα/mi

∗
∏∗h0

i=1

∏∗ui

j=1(Dyij1/xij1 ∗Z2 · · · ∗Z2 Dyijaij
/xijaij

) ∗
∏∗h

i=h0+1Ei,

where Ei has a presentation

〈fi, vi1, . . . , viai1 |(vi1fiviai1f
−1
i )yi1ai1 /xi11+xi1ai1 = v2

il

= v2
il+1 = (vilvil+1)yi1l/xi1l , l = 2, . . . , ai1 − 1〉,

xijl | yijl , yijl ∈ {p1, . . . , pn} , for all i , j , l , and (xi11 + xi1ai1) | yi11 , for
i = h0 + 1, . . . , h . Then Γ can be embedded in H ∗(p1, . . . , pn) as a subgroup of
index d if and only if the following conditions are satisfied:

(i) (The Riemann–Hurwitz condition)

d

2

( n∑
α=1

1
pα

− n+ 1
)
=

n∑
α=1

kα∑
i=kα−1+1

mi

pα
+

h∑
i=1

ui∑
j=1

aij∑
l=1

xijl
2yijl

−
(
kn +

1
2

h∑
i=1

ui∑
j=1

aij +
1
2

h∑
i=1

ui + r

)
+ h− h0 + 1.

(ii) (The integrality condition) The numbers s1, . . . , sn satisfying

2sαpα +
kα∑

i=kα−1+1

2mi +
h∑

i=1

ui∑
j=1

∑
l∈Φij(α)

xijl = d, α = 1, . . . , n,

are nonnegative integers.
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Proof. The proof of the necessity is in the above argument. Conversely, if (i)
and (ii) are satisfied, it follows that

(1) r = (n− 1)d
2
− kn − 1

2

h∑
i=1

ui∑
j=1

aij −
1
2

h∑
i=1

ui −
n∑

α=1

sα + h− h0 + 1.

We will construct an extended Hecke polygon P which consists of sα ideal pα - or
2pα -polygons, the (mα + 2)- or (2mα + 2)-gons, for i = 1, . . . , kn , α = 1, . . . , n ,
and the polygons Rij , for i = 1, . . . , h , j = 1, . . . , ui , such that a subgroup
generated by the side pairing transformations of P is isomorphic to Γ.

Let P0 be a polygon in H2 whose boundary consists of cj -lines as we con-
structed in the proof of Theorem 1.4. For each α = 1, . . . , n − 2, let µα and µ′

α

be the numbers of polygons among those s1 − sn ideal p1 -gons and (mi+2)-gons
if α = 1, and the sα−2sn+1 ideal 2pα -gons and (2mi+2)-gons if α �= 1, which
are attached to P0 or any other polygon along the cα -lines and the cα+1 -lines,
respectively, where i = kα + 1, . . . , kα+1 . Call this new polygon P1 . We will
prove that after attaching the polygons Rij to P1 to obtain a polygon P , the
numbers of cα -lines on ∂P which are sides of Ωα -polygons and Ωα+1 -polygons,
respectively, are the same, where α = 1, . . . , n − 1, and there are r pairs of such
cj -lines on ∂P .

Suppose that for i = 1, . . . , h , j = 1, . . . , ui , there exist integers ξijα , σijαβ1 ,
ηijα , τijαβ2 , ζijα , and ρijαβ3 , where α = 1, . . . , n − 1, β1 = 1, . . . , ξijα , β2 =
1, . . . , ξijηijα , and β3 = 1, . . . , ζijα , such that in each boundary cycle Bij , there
are ξijα collections of branching numbers on the boundary of type (Iα ):

pα
l1
,
pα+1

l2
, . . . ,

pα
l2σijαβ−1

,
pα+1

l2σijαβ

or
pα+1

l1
,
pα
l2
, . . . ,

pα+1

l2σijαβ−1
,

pα
l2σijαβ

,

ηijα collections of branching numbers on the boundary of type (IIα ):

pα
l1
,
pα+1

l2
, . . . ,

pα+1

l2τijαβ−1
,

pα
l2τijαβ

,

and ζijα collections of branching numbers on the boundary of type (IIIα ):

pα+1

l1
,
pα
l2
, . . . ,

pα
l2ρijαβ−1

,
pα+1

l2ρijαβ

.

Since each boundary cycle except for the types (II1 ) and (IIIn−1 ) starts and
ends up with branching numbers on the boundary of types (I1 ) or (In−1 ), we have
the following equation:

(2) ui =
ui∑
j=1

[
1
2 (ξij1 + ξijn−1) + ηij1 + ζijn−1

]
, i = 1, . . . , h.
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Note that for each α = 1, . . . , n − 1, l1, l2σijαβ , l2τijαβ , and l2ρijαβ are odd
numbers, and any other l2, . . . , l2σijαβ−1 (or l2τijαβ−1 , or l2ρijαβ−1 ) are even
numbers. Also, the number of the branching numbers pα+1/l2σijαβ or pα+1/l1 as
in type (Iα ) and pα+1/l1 , pα+1/l2ρijαβ as in type (IIα ) is equal to the number of
the same branching numbers as in type (Iα+1 ) and (IIα+1 ). Then we have

(3) ξijα + 2ζijα = ξijα+1 + 2ηijα+1, α = 1, . . . , n − 2,

and

(4)

aij =
n−1∑
α=1

[ξijα∑
β=1

2σijαβ +
ηijα∑
β=1

(2τijαβ − 1) +
ζijα∑
β=1

(2ρijαβ − 1)
]

−
n−2∑
α=1

(ξijα + 2ζijα)

= 2
n−1∑
α=1

(∑
β

σijαβ +
∑
β

τijαβ +
∑
β

ρijαβ

)

−
n−1∑
α=1

(ξijα + ηijα + 3ζijα)

+ ξijn−1 + 2ζijn−1,

where i = 1, . . . , h , j = 1, . . . , ui .
To compute the numbers of cj -lines, let ε(α) and δ(α) be the numbers of

cα -lines on ∂P and ∂Rij , for i = 1, . . . , h , j = 1, . . . , ui , which are sides of
Ωα -polygons and Ωα+1 -polygons, respectively, where α = 1, . . . , n− 1. First, we
have

ε(1) =
(
s1p1 +

k1∑
i=1

mi − 2sn + 1
)
− (s1 − sn)− k1 − µ1 − µ′

1 +
∑
i,j

∑
l∈Φij(1)

1
2xijl

−
∑
i,j

∑
l∈Φij(1)

#(xijl is even)−
1
2

∑
i,j

∑
l∈Φij(1)

#(xijl is odd)

=
(
s1p1 +

k1∑
i=1

mi − 2sn + 1
)
− (s1 − sn)− k1 − µ1 − µ′

1 +
∑
i,j

∑
l∈Φij(1)

1
2xijl

−
∑
i,j

[ξij1∑
β=1

(σij1β − 1) +
ηij1∑
β=1

(τij1β − 2) +
ζij1∑
β=1

(ρij1β − 1)
]

− 1
2

∑
i,j

(ξij1 + 2ηij1)
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= 1
2
d− 2sn + 1− (s1 − sn)− k1 − µ1 − µ′

1

−
∑
i,j

(∑
β

σij1β +
∑
β

τij1β +
∑
β

ρij1β

)
+

∑
i,j

(
1
2ξij1 + ηij1 + ζij1

)
,

and

δ(1) =
(
s2p2 +

k2∑
i=k1+1

mi − 2sn + 1
)
− (s1 − sn)

− k1 − µ1 − µ′
1 +

∑
i,j

∑
l∈Φij(2)

1
2xijl

−
∑
i,j

∑
l∈Φij(2)

#(xijl is even)−
1
2

∑
i,j

∑
l∈Φij(2)

#(xijl is odd)

=
(
s2p2 +

k2∑
i=k1+1

mi − 2sn + 1
)
− (s1 − sn)

− k1 − µ1 − µ′
1 +

∑
i,j

∑
l∈Φij(2)

1
2xijl

−
∑
i,j

[ξij1∑
β=1

(σij1β − 1) +
ηij1∑
β=1

(τij1β − 1) +
ζij1∑
β=1

(ρij1β − 2)
]

− 1
2

∑
i,j

(ξij1 + 2ζij1)

= 1
2d− 2sn + 1− (s1 − sn)− k1 − µ1 − µ

′

1

−
∑
i,j

(∑
β

σij1β +
∑
β

τij1β +
∑
β

ρij1β

)
+

∑
i,j

(
1
2ξij1 + ηij1 + ζij1

)
= ε(1).

Similarly, for α = 2, . . . , n− 2,

ε(α) = 1
2d− 2sn + 1− (sα − 2sn + 1− µα−1)− (kα − kα−1 − µ

′

α−1)− µα − µ′
α

−
∑
i,j

(∑
β

σijαβ +
∑
β

τijαβ +
∑
β

ρijαβ

)
+

∑
i,j

(
1
2ξijα + ηijα + ζijα

)
= δ(α),
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and

ε(n − 1) = 1
2d− 2sn + 1− (sn−1 − 2sn + 1− µn−1)− (kn−1 − kn−2 − µ′

n−1)

− (kn − kn−1)−
∑
i,j

(∑
β

σijn−1β +
∑
β

τijn−1β +
∑
β

ρijn−1β

)
+

∑
i,j

(
1
2ξijn−1 + ηijn−1 + ζijn−1

)
= δ(n − 1).

This implies that after attaching those polygons Rij , for i = 1, . . . , h , j =
1, . . . , ui , to P1 , which is called a polygon P , the numbers of cα -lines on ∂P
which are sides of Ωα -polygons and sides of Ωα+1 -polygons, respectively, where
α = 1, . . . , n− 1, are the same.

On the other hand, from equations (1), (2), (3), and (4), it follows that

n−1∑
α=1

ε(α) =
n−1∑
α=1

δ(α) = r +
h0∑
i=1

ui.

This proves that on ∂P , there are r − (h − h0) pairs of cj -lines, and each pair
of them are sides of an Ωα -polygon and an Ωα+1 -polygon. Therefore we obtain
a convex polygon P whose boundary is the union of kj − kj−1 pairs of bj -edges
making an interior angle 2miπ/pj , where i = kj−1 + 1, . . . , kj , j = 1, . . . , n , r
pairs of cj -lines, and the ej - and fj -edges on Rij corresponding to Bij .

Let each pair of those cj -lines be identified, and each pair of bj -edges in an
interior angle 2miπ/pj be identified. For i = 1, . . . , h , let each of an ej -edge and
an fj -edge on Rij∩∂P be identified with itself by a reflection. Let each bj -edge on
Rij ∩ ∂P be identified with itself by a reflection if i = 1, . . . , h0 , and be identified
with the other bj -edge on Rij ∩∂P by an orientation-preserving transformation if
i = h0+1, . . . , h . Now P becomes an extended Hecke polygon. Hence a subgroup
generated by the side pairings of P is isomorphic to Γ.

5. Special cases

Theorem 5.1. Suppose that p1, . . . , pn are distinct primes. Let

Γ = Fr ∗
∏∗n

α=1 (Zpα ∗ · · · ∗ Zpα)︸ ︷︷ ︸
kα

∗
∏∗h0

i=1

∏∗ui

j=1(Dyij1/xij1 ∗Z2 · · · ∗Z2 Dyijaij
/xijaij

) ∗
∏∗h

i=h0+1Ei,

where each Ei has a presentation as in Theorem 4.2. Then Γ can be embedded in
H ∗(p1, . . . , pn) as a subgroup of finite index d if and only if the Riemann–Hurwitz
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condition holds, i.e.
(5)
d

2

( n∑
α=1

1
pα

− n+ 1
)
=

n∑
α=1

kα
pα
+

h∑
i=1

ui∑
j=1

aij∑
l=1

xijl
2yijl

−
( n∑

α=1

kα +
1
2

h∑
i=1

ui∑
j=1

aij +
1
2

h∑
i=1

ui + r

)
+ h− h0 + 1,

and for each α = 1, . . . , n , d − 2kα −
∑h

i=1

∑ui

j=1

∑
l∈Φij(α) xijl is a nonnegative

even integer, where Φij(α) = {l | yijl = pα, 1 ≤ l ≤ aij} .
Proof. It is sufficient to prove that the integrality condition follows from the

two conditions in the theorem. Let β ∈ {1, . . . , n} . Multiplying
∏n

α=1 pα to
equation (5), we have( ∏

α �=β

pα

)(
d− 2kβ −

∑
i,j

∑
l∈Φij(β)

xijl

)

=
( n∏
α=1

pα

)[
(n− 1)d− d

∑
α �=β

1
pα
+ 2

∑
α �=β

kα
pα
+

∑
i,j

∑
l �∈Φij(β)

xijl
yijl

−
(
2
∑
α

kα +
∑
i,j

aij +
∑
i

ui + 2r
)
+ 2(h− h0) + 2

]
.

Note that the right-hand side of this equation is a nonnegative even integer divisible
by pβ . Hence there is a nonnegative integer sβ such that

2sβpβ + 2kβ +
∑
i,j

∑
Φij (β)

xijl = d.

In particular, if Γ as in Theorem 5.1 contains only orientation-preserving
transformations, then h = 0 and the index d is an even number. Therefore we
have the following corollary.

Corollary 5.2. Let p1, . . . , pn be distinct primes, and

Γ = Fr ∗
∏∗ n

j=1

(
Zpj ∗ · · · ∗ Zpj︸ ︷︷ ︸

kj

)
.

Then Γ can be embedded in H (p1, . . . , pn) as a subgroup of finite index d if and
only if the Riemann–Hurwitz condition

d

( n∑
j=1

1
pj

− n+ 1
)
=

n∑
j=1

kj
pj

−
( n∑

j=1

kj + r

)
+ 1

holds and d ≥ kj , for j = 1, . . . , n .
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6. Hecke polygons with associated permutations

We will show how to associate a collection of permutations to a Hecke polygon.
Suppose that Γ is a subgroup of index d in H (p1, . . . , pn). By Theorem 2.1,

Γ has a fundamental domain P which is a Hecke polygon. Suppose that P con-
sists of sj ideal pj -gons or 2pj -gons Qj1, . . . , Qjsj , which are a union of pj Ωj -
polygons, and the mi + 2-gon or 2mi +2-gon Qji centered at a bj -vertex, which
is a union of mi Ωj -polygons, for i = sj + 1, . . . , sj + kj − kj−1 , j = 1, . . . , n .

a c

b c
d b e d a e

Q11

Q21 Q31

Q22
3 4

3 4 3

2 1 1
1 2 2 4

Figure 5. For the case of H (4, 2, 4) , a Hecke polygon P = Q11 ∪Q21 ∪Q22 ∪Q31 with the
indicated side pairings, where A1(Q11) = (1 2 3 4), A2(Q21) = (1 3), A2(Q22) = (2 4), A3(Q31)
= (1 4 3 2).

We assign an element in {1, . . . , d} to each of Ωj -polygons in P for each j as
follows (see also Figure 5). For j = 1, . . . , n , let Aj be a function of a collection
Mj of Ωj -polygons onto {1, . . . , d} such that

(1) Aj(R1) �= Aj(R2), for any two elements R1, R2 ∈ Mj ;
(2) Aj(R1) = Aj+1(R2), if R1 ∈ Mj , R2 ∈ Mj+1 , and they have an identified

cj -line.
Write all the elements of Aj(Qji) in counterclockwise order, say {l1, . . . , lr} .

An element (l1, . . . , lr) of a symmetric group Sd is called a permutation associated
to Qji . Let αj be a product of the permutations associated to Qji , i = 1, . . . , sj+
kj−kj−1 , j = 1, . . . , n . Note that αj is a product of disjoint sj pj -cycles and mi -
cycles, i = kj−1+1, . . . , kj . Then {α1, . . . , αn} is called a system of permutations
associated to P or Γ with respect to pj ’s and mi ’s.

In fact, the group 〈α1, . . . , αn〉 acts transitively on {1, . . . , d} . For, if two
elements a, b of {1, . . . , d} are in disjoint cycles of α1 , say a ∈ A1(Q11), b ∈
A1(Q12), by the connectivity of the set E of the union of the ej - and fj -edges in
P there is a path of ej - and fj -edges in E , for some j = j1, . . . , jr , which connects
the b1 -vertex in Q11 to the b1 -vertex in Q12 . Note that any of the ej - and fj -
edges in the same Qji can be mapped to an ej - or fj -edge under some power
of αj . Then a gets mapped to b through some powers of α1, αj1 , . . . , αjr , α1 ,
respectively. Hence any Hecke polygon gives us a group of permutations in Sd

acting transitively on {1, . . . , d} .
On the other hand, we will show that the number of cusps on P/Γ is the

number of disjoint cycles of σ = αn · · ·α1 . If x is a cusp on P/Γ, then there
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is a sequence of cj -lines and bj -edges around x as follows. Start with a c1 -line
or a b1 -edge L1 through x on an Ω1 -polygon R1 in P such that R1 remains
on the left when we walk along L1 toward x . Suppose that A1(R1) = 1. Let
R2 be an Ω1 -polygon, possibly R1 = R2 , with A1(R2) = α1(1). Let L2 be a
c1 -line of R2 which contains a cusp equivalent to x . Then there is a c1 -line M2

on an Ω2 -polygon R3 with A2(R3) = α1(1). Again there is a c2 -line L3 on an
Ω2 -polygon R4 which contains a cusp equivalent to x with A2(R4) = α2α1(1).
Continuing this way, we generate a sequence of edges {L1, L2,M2, . . . , Ln,Mn}
each of which contains a cusp equivalent to x , and a sequence of Ωj -polygons
{R1, R2, . . . , R2n−1, R2n} such that Aj(R2j−1) = αj−1 · · ·α1(1), Aj(R2j) =
αj · · ·α1(1), where j = 1, . . . , n , and α0 = identity .

Next there is an Ωn−1 -polygon R2n+1 , an Ωn−2 -polygon R2n+2 , . . . , and
an Ω2 -polygon R3n−2 attached to Mn cyclically, where A2(R3n−2) = · · · =
An−1(R2n+1) = An(R2n). If An(R2n) �= 1, then repeat the same argument
for an edge on an Ω1 -polygon R3n−1 with A1(R3n−1) = An(R2n). This will stop
at the l -th step when An(R2ln) = 1 (see Figure 6).

d d
4

a

L1

b

2 R2

L2

R1

1 3
3

4
c c e

b e
L3

M2

R54 1

3 2 2 1
a

R4R6 R3=R7

L4=M4

M3

Figure 6. The subgroup generated by the side pairings of this Hecke polygon is of index 4 in
H (3, 2, 4) .

From the above observation we see that the number of cusps on P/Γ is exactly
the number of disjoint cycles of σ .

Conversely, given pj ’s and mi ’s satisfying the conditions (i) and (ii) in The-
orem 1.4, let αj be a permutation of disjoint sj pj -cycles and mi -cycles, i =
kj−1 + 1, . . . , kj , j = 1, . . . , n . Suppose that 〈α1, . . . , αn〉 is acting transitively
on {1, . . . , d} , and σ = αn · · ·α1 has t cycles. We will construct a Hecke poly-
gon P such that a group generated by the side pairings of P has a signature
(g; p1/m1, . . . , pn/mkn ; t).

For each j , let Qji , be an ideal pj -gon or an 2pj -gon, for i = 1, . . . , sj , and
an mi+2-gon or a 2mi+2-gon, for i = sj+1, . . . , sj+kj−kj−1 . If (i1, . . . , ir) is
a cycle of αj , assign those elements i1, . . . , ir cyclically in counterclockwise order
to Ωj -polygons of some Qji in which the number of Ωj -polygons is r . Then this
Qji with those assigned numbers is called a polygon associated to (i1, . . . , ir).

Let a, b be any two elements of {1, . . . , d} . Since 〈α1, . . . , αn〉 is acting tran-
sitively on {1, . . . , d} , there are some permutations, say, α1, . . . , αq such that

αlq
q · · ·αl1

1 (a) = b,
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for some powers l1, . . . , lq . Then there is a cycle βj in αj , for each j = 1, . . . , q ,
such that β

lq
q · · ·βl1

1 (a) = b . Let zj = β
lj
j · · · βl1

1 (a), j = 1, . . . , q . Then z1 =
βl1

1 (a) ∈ β1 ∩ β2 , z2 ∈ β2 ∩ β3 , . . . , zq−1 ∈ βq−1 ∩ βq , b = zq ∈ βq .
Suppose that Qj1 is a polygon associated to βj , j = 1, . . . , q . Then there

is an Ωj -polygon Rj ⊂ Qj1 and an Ωj+1 -polygon R′
j ⊂ Qj+11 with Aj(Rj) =

Aj+1(R′
j) = zj , for j = 1, . . . , q − 1. Hence Qj+11 can be attached to Qj1 along

the cj -lines which are sides of Rj and R′
j , j = 1, . . . , q−1. Call this polygon P0 .

Suppose that Qq+11, . . . , Qn1 are the polygons whose associated permutations
contain b . Let Wj be an Ωj -polygon contained in Qj1 with Aj(Wj) = b , for
j = q + 1, . . . , n . Now attach Qq+11, . . . , Qn1 to P0 along the cj -lines which
are sides of Wq+1, . . . ,Wn . Call this polygon P1 . Similarly, the Qji ’s whose
associated permutations contain a can be attached to P1 . Call this polygon P2 .
Hence all the polygons Qji ’s whose associated permutations contain a and b are
attached together.

Since any element in {1, . . . , d} is mapped to a under some permutation in
〈α1, . . . , αn〉 , all the rest of the Qji ’s can be attached to P2 in the same way as
above. Call this polygon P . The boundary of P consists of cj -lines and pairs of
bj -edges making an angle 2miπ/pj .

Before the Qji ’s are attached to each other, there are d cj -lines on Qji ’s and
Q′

j+1is , respectively. When any two of the Qji ’s are attached along a cj -line, we
lose one cj -line from each of Qji ’s and Qj+1i ’s. Hence the number of cj -lines
on ∂P which are sides of Ωj -polygons and Ωj+1 -polygons, respectively, is the
same. Therefore, to find the number of cj -lines on ∂P , it is sufficient to count the
number of cj -lines on ∂P which are sides of Ωj -polygons, where j = 1, . . . , n−1.
There are (n − 1)d cj -lines on Qji ’s, j = 1, . . . , n − 1, altogether. Then after
attaching those

∑n
j=1 sj +

∑n
j=1(kj − kj−1) polygons Qji ’s, there are

r = (n − 1)d −
n∑

j=1

sj − kn + 1

cj -lines on ∂P which are sides of Ωj -polygons, j = 1, . . . , n− 1.
Now pair a cj -line of an Ωj -polygon Uj on ∂P to a cj -line of an Ωj+1 -

polygon Uj+1 on ∂P with Aj(Uj) = Aj+1(Uj+1). Any two bj -edges on ∂P
making an interior angle 2miπ/pj are identified. Then P together with those side
pairings becomes a Hecke polygon.

Moreover, if Γ is a subgroup of H (p1, . . . , pn) generated by the side pairings
of P , we see by using the previous argument that the number of cusps of the surface
H2/Γ is t , and Γ has a signature (g; p1/m1, . . . , pn/mkn; t), where r = 2g+ t−1.
Therefore we proved the following theorem.

Theorem 6.1. Let k0 = 0, k1, . . . , kn, g, t, r be nonnegative integers, where
ki ≤ ki+1 , for i = 1, . . . , n − 1 , t ≥ 1 , and r = 2g + t − 1 . Let mi be positive
integers, where mi | pj , i = kj−1 + 1, . . . , kj , j = 1, . . . , n . Then H (p1, . . . , pn)
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contains a subgroup of index d with a signature (g; p1/m1, . . . , pn/mkn; t) if and
only if

(i) The numbers r , pj ’s mi ’s and sj ’s satisfy the Riemann–Hurwitz and
integrality conditions as in Theorem 1.4.

(ii) For j = 1, . . . , n , there exists a permutation αj in Sd such that
(a) αj is a product of disjoint pj -cycles (in all sj of them) and mi -cycles,

i = kj−1 + 1, . . . , kj .
(b) The group 〈α1, . . . , αn〉 acts transitively on {1, . . . , d} .
(c) The permutation σ = αn · · ·α1 has t disjoint cycles.

7. Branched coverings of punctured spheres

In this section we will construct branched coverings of a punctured sphere
H2/H (p1, . . . , pn) by applying Theorem 6.1 or using a Hecke polygon.

First note that the Riemann–Hurwitz and integrality conditions are not suf-
ficient for the existence of a subgroup with a given signature if n ≥ 3 (see the
following example).

Example. Consider a torsion free subgroup isomorphic to F7 of index 6 with
a signature (0; 8) in H (2, 3, 6). Here, χ(F7) = −6 and χ

(
H (2, 3, 6)

)
= −1.

Integrality conditions are also satisfied. However, by Proposition 7.1 below F7

cannot be regarded as a subgroup of H (2, 3, 6) with a signature (0; 8).

a a
Q1 R Q2

b c d
e

d
b f

g
c g e f

Figure 7. The c1 - and c2 -lines marked by the same letters are identified.

Note that F7 can be regarded as a subgroup in H (2, 3, 6) with a signature
(1; 6), or (2; 4), or (3; 2). Indeed, take two ideal hexagons Q1 , Q2 which both
consist of six Ω2 -polygons and one ideal hexagon R which consists of six Ω3 -
polygons. Glue those hexagons together along the c2 -lines through ∞ to get a
polygon P as in Figure 7. Let the c1 -lines through ∞ on ∂P be identified. Then
the side pairings of P

abcded−1b−1fgc−1g−1e−1f−1a−1

abcdeb−1d−1fgc−1g−1e−1f−1a−1

abcdeb−1d−1fgc−1f−1e−1g−1a−1

correspond to subgroups with signatures (1; 6) (see Figure 7), (2; 4) and (3; 2),
respectively.
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Proposition 7.1. Suppose that Γ is a subgroup of index d in H (p1, . . . , pn)
whose number of cusps is t . Then we have a partition d =

∑t
i=1 di . In particular

t ≤ d .

Proof. The surface H2/Γ is a branched cover of degree d of the once-
punctured sphere H2/H (p1, . . . , pn). Let {x̃1, . . . , x̃t} and x be the cusps in
H2/Γ and H2/H (p1, . . . , pn). Compactify H2/Γ and H2/H (p1, . . . , pn) by fill-
ing with cusps. The original branched covering is extended to the one of de-
gree d between the compactified surfaces. Then there are t points {x̃1, . . . , x̃t}
in the fiber of x . Let γ̃i be a simple closed curve around x̃i . It projects in
H2/H (p1, . . . , pn) as a (not necessarily simple) closed curve γi around x . Let di
be the winding number of γi around x . Then d =

∑t
i=1 di . In particular t ≤ d .

The result in [2] implies that in our case, if n ≥ 3 and t | d , then t can be
realized as the number of cusps of a subgroup of index d .

Theorem 7.2. Suppose that n ≥ 3 , lcm(p1, . . . , pn) | d and t | d . Then there
exists a torsion free subgroup of index d with a signature (g; t) in H (p1, . . . , pn)
if 2g + t− 2 = d

(
n− 1−

∑n
j=1 1/pj

)
.

Proof. Let d = kt , and let E, V1, . . . , Vn+1 be integers satisfying E = (n+1)d ,
pjVj = d , where j = 1, . . . , n + 1, and pn+1 = k . Then

∑n+1
j=1 Vj − E + 2d =

2 − 2g . From Theorem 1.3 in [2], there is a tessellation of a surface M of genus
g into 2d (n + 1)-gons with E edges and

∑n+1
j=1 Vj vertices, Vj of valence 2pj ,

j = 1, . . . , n+ 1, such that each face has vertices of valence 2p1, . . . , 2pn+1 , up to
cyclic order. Remove the vertices of valence 2k from M to obtain a topological
surface X of genus g with t cusps. Then X is a branched cover of a once-
punctured sphere S with n branch points P1, . . . , Pn with branching numbers
p1, . . . , pn .

Let π: X → S be the corresponding projection map. If πS : H2 → S is
the universal branched covering with branching numbers p1, . . . , pn , the covering
group of πS : H2 → S is isomorphic to H (p1, . . . , pn). Then πS factors through
H2 πX−→X

π−→S . The set π−1(Pj) is precisely the Vj vertices of the tessellation of
X lying over Pj . The condition pjVj = d ensures that H2 πX−→X is an unbranched
covering. This corresponds to a torsion free subgroup Γ of the covering group of
πS : H2 → S . To realize Γ as a subgroup of the Fuchsian group H (p1, . . . , pn),
we proceed as follows.

First add a vertex to each compact edge of X as a “midpoint”. Next on each
face of X , add all noncompact edges through a cusp and any other vertices. Now
each face has n+ 1 triangles. Let T be one of these triangles. Replace T by one
of the triangles ∆∗

j ’s and ∆̃
∗
j ’s, called T̃ , as in Section 2. On the interior of T̃ ,

we have a well-defined hyperbolic metric. These T̃ ’s can be glued along edges by
uniquely defined isometries. So at the end, we get a complete Riemannian metric
of constant curvature −1 on X . This extends uniquely to a universal covering
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H2 → X which is an isometry on each component of the inverse image on each
face. Therefore X is homeomorphic to H2/Γ, for some torsion free subgroup Γ
of index d in H (p1, . . . , pn).

We now discuss some special cases for the realizability of signatures by sub-
groups of finite index in H (p1, . . . , pn). We suppose that n and pj ’s satisfy any
of the following conditions: (i) p1 = pn = 2, p2 = · · · = pn−1 = p ; (ii) n = 4,
pj ≥ 4, (j = 1, . . . , 4); (iii) n = 5, pj ≥ 3, (j = 1, . . . , 5); (iv) n ≥ 6, pj ≥ 2,
(j = 1, . . . , n).

Theorem 7.3. Let g and t ≥ 1 be nonnegative integers. Suppose that p
and d are positive integers, where p ≥ 2 and d is divisible by lcm(2, p) . Then
H (2, p, . . . , p︸ ︷︷ ︸

n

, 2) contains a torsion free subgroup of index d with a signature (g; t)

if and only if 2g + t = (1 − 1/p)nd + 2 and t ≤ d .

Proof. The necessity of the conditions follow from the Riemann–Hurwitz
condition and Proposition 7.1. We will prove the sufficiency by constructing a
Hecke polygon.

First, take d/p ideal 2p-gons centered at bj -vertices, for each j = 1, . . . , n .
Glue these ideal polygons together along the cj -lines through ∞ to obtain a
polygon P . Then we can identify the cj -lines on ∂P with the desired pattern to
have a surface of genus g with t cusps.

Corollary 7.4. Let Γ be a torsion free subgroup of index d in
H (2, p, . . . , p︸ ︷︷ ︸

n

, 2) , where p ≥ 2 and d is divisible by lcm(2, p) . Then the sur-

face H2/Γ of genus g with t cusps is a branched cover of degree d of the
once-punctured sphere H2/H (2, p, . . . , p, 2) branched at all bj -vertices to order
{2, . . . , 2︸ ︷︷ ︸

d

, p, . . . , p︸ ︷︷ ︸
nd/p

} if and only if 2g + t = (1 − 1/p)nd+ 2 and t ≤ d .

Theorem 7.5. Suppose that n ≥ 3 , pj ≥ 2 , j = 1, . . . , n , and d is divisible
by lcm(p1, . . . , pn) . Let g, t ≥ 1 be nonnegative integers, and let d = kjpj , for
j = 1, . . . , n . If 2g + t = (n − 1)d −

∑n
j=1 kj + 2 and t ≤ min

{
d, (n − 2)d −∑n

j=1 kj + 3
}
, then H (p1, . . . , pn) contains a torsion free subgroup of index d

with a signature (g; t) .

Proof. To find a subgroup with a signature (g; t) amounts to choosing an
appropriate αj in Sd , j = 1, . . . , n , such that αn · · ·α1 has disjoint t cycles.

There will be two cases. First, suppose that d = 4. Then each pj is either
2 or 4. If each pj equals 2, then the result follows directly from Theorem 7.3.
Suppose that there are n1 of those pj ’s equal to 2 and n2 of them equal to 4.
Then t = 2n+ n2 − 2− 2g .
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If n2 is an odd number, t is also an odd number, namely 1 or 3. Consider
two collections

E1 = {[2, 2], . . . , [2, 2]︸ ︷︷ ︸
n1

, [4], . . . , [4]︸ ︷︷ ︸
n2

, [4]}

and
E2 = {[2, 2], . . . , [2, 2]︸ ︷︷ ︸

n1

, [4], . . . , [4]︸ ︷︷ ︸
n2

, [1, 1, 2]}

of partitions of d . Then the total branchings [3] v(E1) = 2n1 + 3n2 + 3 and
v(E2) = 2n1 + 3n2 + 1 are even numbers.

If n2 is an even number, t is also an even number, namely 2 or 4. Consider
two collections

E3 = {[2, 2], . . . , [2, 2]︸ ︷︷ ︸
n1

, [4], . . . , [4]︸ ︷︷ ︸
n2

, [2, 2]}

and
E4 = {[2, 2], . . . , [2, 2]︸ ︷︷ ︸

n1

, [4], . . . , [4]︸ ︷︷ ︸
n2

, [1, 1, 1, 1]}

of partitions of d . Then the total branchings v(E3) = 2n1 + 3n2 + 2 and v(E4) =
2n1+3n2 are also even numbers. Moreover, for j = 1, 2, 3, 4, v(Ej) ≥ 2n1+3n2 =
2n+n2 ≥ 2d− 2 = 6, because n ≥ 3. Therefore E1 , E2 , E3 and E4 are realizable
by Complement 5.6 in [3].

Secondly, suppose that d �= 4. Let F = {A1, . . . , An+1} be a collection of
partitions of d , where Aj = [pj , . . . , pj ] , for j = 1, . . . , n , and An+1 = [m1, . . . ,mt]
with

∑t
i=1mi = d . The total branching is

v(F ) =
n∑

j=1

(pj − 1)kj +
t∑

i=1

(mi − 1) = (n + 1)d −
n∑

j=1

kj − t.

Since t ≤ (n−2)d−
∑n

j=1 kj+3, it follows that v(F ) ≥ 3(d−1). By Theorem 5.4
in [3], F is realized as the branch data of a connected branched covering of a closed
sphere S2 . Hence, by Lemma 2.1 in [3], for each j = 1, . . . , n , there exists αj in
Sd which is a product of kj disjoint pj -cycles such that α1 · · ·αn is a product of
disjoint mi -cycles, i = 1, . . . , t , and 〈α1, . . . , αn〉 acts transitively on {1, . . . , d} .

Corollary 7.6. Suppose that n ≥ 3 , pj ≥ 2 , j = 1, . . . , n , and d
is divisible by lcm(p1, . . . , pn) . Let d = kjpj , for j = 1, . . . , n . If 2g +
t = (n − 1)d −

∑n
j=1 kj + 2 and t ≤ min

{
d, (n − 2)d −

∑n
j=1 kj + 3

}
, then

H (p1, . . . , pn) contains a torsion free subgroup Γ of index d such that H2/Γ is
a surface of genus g with t cusps which is a branched cover of degree d of the
once-punctured sphere H2/H (p1, . . . , pn) , branched at all bj -vertices to order
{p1, . . . , p1︸ ︷︷ ︸

k1

, . . . , pn, . . . , pn︸ ︷︷ ︸
kn

} .
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We would like to know whether or not the Riemann–Hurwitz condition and
the condition on t in Theorem 7.5 are also necessary for the existence of a subgroup
of H (p1, . . . , pn) with a prescribed signature. In fact, in each of the cases: (i)
n = 4, pj ≥ 4, (j = 1, . . . , 4); (ii) n = 5, pj ≥ 3, (j = 1, . . . , 5); (iii) n ≥ 6,
pj ≥ 2, (j = 1, . . . , n), it follows that (n − 2)d −

∑n
j=1 kj + 3 ≥ d . Then the

sufficient condition on t in Theorem 7.5 (which is now reduced to t ≤ d) is the
same as the necessary end-condition in Proposition 7.1. Those consequences are
stated as the following theorem.

Theorem 7.7. Suppose that n and pj , j = 1, . . . , n , satisfy any of the
following conditions:

(i) n = 4 , pj ≥ 4 , j = 1, . . . , 4; (ii) n = 5 , pj ≥ 3 , j = 1, . . . , 5; (iii) n ≥ 6 ,
pj ≥ 2 , j = 1, . . . , n , and that d is divisible by lcm(p1, . . . , pn) . Let g, t ≥ 1 be
nonnegative integers, and let d = kjpj , for j = 1, . . . , n . Then H (p1, . . . , pn)
contains a torsion free subgroup of index d with a signature (g; t) if and only if
2g + t = (n− 1)d−

∑n
j=1 kj + 2 and t ≤ d .

Corollary 7.8. Suppose that n and pj , j = 1, . . . , n , satisfy any of the
following conditions: (i) n = 4 , pj ≥ 4 , j = 1, . . . , 4; (ii) n = 5 , pj ≥ 3 ,
j = 1, . . . , 5; (iii) n ≥ 6 , pj ≥ 2 , j = 1, . . . , n , and that d is divisible by
lcm(p1, . . . , pn) . Let Γ be a torsion free subgroup of index d in H (p1, . . . , pn) .
Then the surface H2/Γ of genus g with t cusps is a branched cover of degree
d of the once-punctured sphere H2/H (p1, . . . , pn) , branched at all bj -vertices to
order {p1, . . . , p1︸ ︷︷ ︸

k1

, . . . , pn, . . . , pn︸ ︷︷ ︸
kn

} if and only if 2g+t = (1−1/p)nd+2 and t ≤ d .
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