Zbl 866.11019

Calkin, Neil J.; Erdős, Paul

On a class of aperiodic sum-free sets. (In English)

Math. Proc. Camb. Philos. Soc. 120, No.1, 1-5 (1996). [ISSN 0305-0041]

A set S of positive integers is said to be sum-free if $(S+S)\cap S=\emptyset$, where $S+S=\{x+y\mid x,y\in S\}$. A sum-free set S is complete iff it is constructed greedily from a finite set, i.e. there is an n' such that for all n>n', $n\in S\cup (S+S)$. Let us call S ultimately periodic (with respect to m) if there is an n^* such that for $n>n^*$, $n\in S\Leftrightarrow n+m\in S$. Let

$$S(\alpha) = \{n : \{n\alpha\} \in (1/3, 2/3)\}.$$

The authors note that for α irrational $S(\alpha)$ is aperiodic. The main result of the paper states: For every irrational α , the set $S(\alpha)$ is incomplete. The authors raise some open questions on this topic as well.

N.Hegyvari (Budapest)

Classification:

11B83 Special sequences of integers and polynomials

Keywords:

additive problems; aperiodic sum-free sets; aperiodic; incomplete; sum-free sets