Zbl 847.11048

Erdős, Paul; Saias, Eric

Sur le graphe divisoriel.

On the divisor graph. (In French)

Acta Arith. 73, No.2, 189-198 (1995). [0065-1036]

Let R_f , R_g be the relations on the positive integers not exceeding x given by

$$aR_f b \Leftrightarrow a|b \text{ or } b|a, \quad aR_g b \Leftrightarrow \text{lcm}(a,b) \leq x.$$

If $n_i R_f n_{i+1}$ for $i=1,2,\ldots,\ell-1$, then n_1,n_2,\ldots,n_ℓ is said to be a chain of length ℓ for the relation R_f . Let f(x) denote the maximum value of ℓ , and define similarly a quantity g(x) for the relation R_g . The second author [Applications desentiers à diviseurs denses (Preprint)] showed that for all $x \geq 2$, $cx/\log x \leq f(x) \leq g(x) \leq c'x\log x$ for certain positive constants c, c'. In this paper, the authors consider the minimum number $\phi(x)$ of chains for the relation R_f that are required in order that every positive integer $\leq x$ belongs to at least one such chain, and the corresponding number $\gamma(x)$ for the relation R_g . The analogous quantity when the chains for R_f , R_g are pairwise disjoint is denoted by $\phi^*(x)$, $\gamma^*(x)$, respectively. It is shown that there exist positive constants c_1 , c_2 , c_3 such that for all $x \geq 2$,

$$\frac{c_1 x}{\log x} \le \gamma(x) \le \phi(x) \le \frac{c_2 x}{\log x}, \quad c_3 x \le \gamma^*(x) \le \phi^*(x) \le \frac{x}{2}.$$

Although the proofs are elementary, the establishment of the upper bound for $\phi(x)$, particularly, is somewhat intricate.

E.J.Scourfield (Egham)

Classification:

11N56 Rate of growth of arithmetic functions

11N25 Distribution of integers with specified multiplicative constraints

11N37 Asymptotic results on arithmetic functions

Keywords:

divisor graph; relation in terms of least common multiple; chains for a relation; upper bound for the minimum number of chains