Zbl 831.52008

Erdős, Paul; Fishburn, Peter C.

Multiplicities of interpoint distances in finite planar sets. (In English)

Discrete Appl. Math. 60, No.1-3, 141-147 (1995). [0166-218X]

For a set X of n points in the plane, let d_1, \ldots, d_m denote the different positive distances between the points of X, and r_k the multiplicity of d_k . The authors study the vector $r(X) = (r_1, \ldots, r_m)$, where the numbering is chosen such that $r_1 \geq r_2 \geq \cdots \geq r_m$. The case where X is the set V of vertices of a convex polygon is considered particularly. For n = 5 and $m \in \{2,3\}$, the possible vectors r(X) and r(V) are completely specified. For n = 6, it is shown that r(X) cannot be equal to (7,7,1). There is a discussion of some known results and several challenging conjectures which are related to this topic.

J.Linhart (Salzburg)

Classification:

52C10 Erdoes problems and related topics of discrete geometry

Keywords:

minimum number of different distances; multiplicity vector