Zbl 824.11005

Erdős, Paul; Joó, István; Komornik, Vilmos

On the number of q-expansions. (In English)

Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 37, 109-118 (1994). [0524-9007]

Let (p_i) be a sequence of positive numbers with $P = \sum p_i < \infty$. For a real number $x \in [0, P]$, let (c_i) and (d_i) be two sequences defined as follows: $c_1 = 1$ if $p_1 \leq x$, $c_1 = 0$ otherwise; if c_1, \ldots, c_{i-1} are already defined, let $c_i = 1$ if $c_1 p_1 + \cdots + c_{i-1} p_{i-1} \le x - p_i, \ c_i = 0 \text{ otherwise}; \ d_1 = 0 \text{ if } \sum_{j \ge 1} p_j \ge x,$ $d_1 = 1$ otherwise; if d_1, \ldots, d_{i-1} are already defined, let $d_i = 0$ if $\sum_{j>i} p_j \geq 1$ $x - \sum_{i < i} p_i$, $d_i = 1$ otherwise.

If $\sum c_i p_i = x$ ($\sum d_i p_i = x$), then $\sum c_i p_i$ ($\sum d_i p_i$) is called the greedy (lazy) expansion of x. More generally, $\sum a_i p_i$ is an expansion of x if $a_i \in \{0,1\}$ for every i and if $\sum a_i p_i = x$.

The authors investigate these expansions in case $p_i = q^{-i}$, where $q \in (1,2)$ (q-expansions) and they give a new proof of the following property stated by the same authors [Bull. Soc. Math. Fr. 118, 377-390 (1990; Zbl 721.11005)]: For every $1 \leq N \leq \omega$ there are 2^{ω} numbers $q \in (1,2)$ such that 1 has exactly N different q-expansions.

L. Tóth (Cluj)

Classification:

11A67 Representation systems for integers and rationals

Keywords:

expansions of real numbers; greedy expansion