Zbl 811.11014

Articles of (and about)

Erdős, Paul; Sárkőzy, A.; Sós, T.

On sum sets of Sidon sets. I. (In English)

J. Number Theory 47, No.3, 329-347 (1994). [0022-314X]

For a finite or infinite set $A \subseteq \mathbb{N} = \{1, 2, \dots\}$ let $A(n) = |A \cap [1, n]|$ and $2A = \{a + a' \mid a, a' \in A\}$. A is called a Sidon set if all sums a + a' in 2A, $a \leq a'$ are distinct.

Sum sets 2A of Sidon sets A cannot consist of "few" generalized arithmetic progressions of the same difference. To be more precise let $B_d = \{a \in$ $2A \mid a-d \notin 2A$ for $d \in \mathbb{N}$. There are absolute constants $c_1, c_2 > 0$ such that for all $d \in \mathbb{N}$ we have $|B_d| > c_1 |A|^2$ if A is a finite Sidon set and (*) $\limsup_{N\to+\infty} B_d(N)(A(N))^{-2} > c_2$ if A is an infinite Sidon set. For the proof in the case of infinite A the generating function $f(z) = \sum_{a \in A} z^a$, where $z=e^{-1/N}e^{2\pi i\alpha}$ for large $N\in\mathbb{N}$ and real α is considered. Assuming the contrary of the proposition, ingenious estimates of $I := \int_0^1 |(1-z^d)f^2(z)|^2 d\alpha$ lead to contradicting lower and upper bounds for I. By example it is shown that $(A(N))^{-2}$ in (*) cannot be replaced by $(A(N))^{-2}\log^{-1}N$.

While these results in the case d = 1 deal with blocks of consecutive elements in 2A for Sidon sets A, the next theorems give information about gaps between consecutive elements of 2A. Let $2A = \{s_1, s_2, \dots\}, s_1 < s_2 < \dots$. For $n \in \mathbb{N}$, $n > n_0$ there exists a Sidon set $A \subseteq \{1, 2, \dots, n\}$ such that $s_{i+1} - s_i < 3\sqrt{n}$ for all $s_{i+1} \in 2A \setminus \{s_1\}$. The prime number theorem is used for constructing such sets A. For infinite Sidon sets the probabilistic method of Erdős and Rényi is adapted to prove the following result: For $\varepsilon > 0$ there is a Sidon set A such that

$$s_{i+1} - s_i < \sqrt{s_i} (\log s_i)^{(3/2) + \varepsilon}$$

for all $i > i_0(\varepsilon)$ and $s_i \in 2A$. Also given are lower estimates for $s_{i+1} - s_i$. A catalog of unsolved problems concerning Sidon sets and $B_2[g]$ sets closes this part I.

J.Zöllner (Mainz)

Classification:

11B13 Additive bases

Keywords:

addtive bases; B_2 -sequences; sum sets of Sidon sets; infinite Sidon sets