Zbl 802.11035

Erdős, Paul; Sárközy, A.

On isolated, respectively consecutive large values of arithmetic functions. (In English)

Acta Arith. 66, No.3, 269-295 (1994). [0065-1036]

This paper is divided into two parts. In the first part, the authors investigate the occurrence of isolated large values of the arithmetic functions $\omega(n)$, $\Omega(n)$, d(n), and $\sigma(n)$. Given an arithmetic function f(n) and $x \geq 1$, the authors define G = G(f,x) as the largest integer such that the inequality $f(n) > \sum_{0 < |i| \leq G} f(n+i)$ holds for some positive integer $n \leq x$, and obtain estimates for this quantity when f is one of the above functions. For example, in the case $f = \omega$ the authors show that

$$\frac{\log x}{(\log_2 x)^2} \ll G(\omega, x) \ll \frac{\log x}{\log_2 x \log_3 x},$$

where $\log_k x$ denotes the k fold iterated logarithm, and for $f = \sigma$ they derive the asymptotic formula

$$G(\sigma, x) \sim \frac{3e^{\gamma}}{\pi^2} \log_2 x \qquad (x \to \infty).$$

The second part of the paper is devoted to the study of consecutive large values of the above arithmetic functions. Setting $M(f,x) = \max_{n \leq x} f(n)$, $T(f,x) = \max_{n \leq x} (f(n-1) + f(n))$, the authors show, for example, that

$$T(\Omega, x) \ge M(\Omega, x) + \exp\left\{(\log 2 - \varepsilon) \frac{\log_2 x}{\log_3 x}\right\}$$

holds for any given $\varepsilon > 0$ and arbitrarily large values χ . Surprisingly, as the authors remark, the case of the function $\omega(n)$ appears to be much more difficult, and even the weakest non-trivial estimate of this type, namely $\limsup_{x\to\infty} (T(\omega,x)-M(\omega,x))=\infty$, remains an open problem.

A. Hildebrand (Urbana)

Classification:

11N37 Asymptotic results on arithmetic functions

11N64 Characterization of arithmetic functions

11K65 Arithmetic functions (probabilistic number theory)

Keywords:

occurrence of isolated large values; arithmetic functions; asymptotic formula; consecutive large values