Zbl 794.05086

Articles of (and about)

Erdős, Paul; Hattingh, Johannes H.

Asymptotic bounds for irredundant Ramsey numbers. (In English)

Quaest. Math. 16, No.3, 319-331 (1993). [0379-9468]

Let G(V, E) be a graph. A set of vertices $X \subseteq V$ is said to be irredundant if each vertex $x \in X$ is either an isolated vertex in the subgraph induced by X or there is vertex y in V-X which is incident with x and no other vertex in X. The irredundant Ramsey number s(m,n) is the smallest positive integer s so that, in every red-blue coloring of the edges of the complete graph on s vertices, either the blue graph contains an m- element irredundant set or the red graph contains an *n*-element irredundant set. The main result of this paper is

Theorem 1. For each $m \geq 3$ there is a positive constant C_m such that

$$s(m,n) > C_m \left(\frac{n}{\log n}\right)^{\frac{m^2 - m - 1}{2(m-1)}}.$$

J.E. Graver (Syracuse)

Classification:

05C55 Generalized Ramsey theory

Keywords:

bounds; irredundant Ramsey number