Zbl 787.05071

Erdős, Paul; Galvin, Fred

Monochromatic infinite paths. (In English)

Discrete Math. 113, No.1-3, 59-70 (1993). [0012-365X]

Let K_{ω} denote the complete graph on the natural numbers. It is shown that if the edges of K_{ω} are colored with 2 colors, then there is a monochromatic infinite path P with upper density $\geq 2/3$, where the upper density for P is $\limsup_{n\to\infty} |V(P)\cap\{1,2,\ldots,n\}|/n$. It is also shown that there is a monochromatic infinite path P such that the set $\{1, 2, \ldots, n\}$ contains at least the first .21n vertices of the path P. Corresponding results are obtained for coloring K_{ω} with r colors for $r \geq 3$, and upper bounds are given for various density conditions on infinite monochromatic paths. For example it is shown that the edges of K_{ω} can be colored with r colors such that every (r-1)-colored path has upper density $\leq 1 - (2^r - 1)^{-2}$.

R. Faudree (Memphis)

Classification:

05C55 Generalized Ramsey theory

05C38 Paths and cycles

05C15 Chromatic theory of graphs and maps

Keywords:

monochromatic infinite path; coloring; density