Zbl 780.11040

Articles of (and about)

Erdős, Paul; Pomerance, C.; Sárközy, A.; Stewart, C.L.

On elements of sumsets with many prime factors. (In English)

J. Number Theory 44, No.1, 93-104 (1993). [0022-314X]

Let $\nu(n)$ be the number of distinct prime factors of n. The following problem is studied in the paper. Having two finite sets of positive integers $\mathcal A$ and $\mathcal B$ how big is $\nu(n)$ on the sumset $\mathcal{A} + \mathcal{B}$? Suppose that \mathcal{A} and \mathcal{B} are subsets of $\{n \leq N/2\}$. Then certainly $\max \nu(a+b) \leq m$ where m=m(N) is the maximal value of $\nu(n)$ for $n \leq N$. It is shown that for dense sets this upper bound is almost attained, more precisely, for each $\varepsilon > 0$ there is a $c(\varepsilon)$ such that if $|\mathcal{A}||\mathcal{B}| > \varepsilon N^2$ then we have $\max \nu(a+b) > m - c(\varepsilon)\sqrt{m}$. It is also shown that this result is close to best possible. The proof has both probabilistic and combinatorial flavour.

A.Balog (Budapest)

Classification:

11N25 Distribution of integers with specified multiplicative constraints

11B75 Combinatorial number theory

11N56 Rate of growth of arithmetic functions

Keywords:

hybrid theorems; multiplicative properties of sumsets