Zbl 776.11011

Erdős, Paul; Sárközy, A.

On sets of coprime integers in intervals. (In English)

Hardy-Ramanujan J. 16, 1-20 (1993).

For any subset \mathcal{A} of \mathbb{N} , let $\Phi_k(\mathcal{A})$ denote the number of k-tuples (a_1,\ldots,a_k) with $a_i \in \mathcal{A}$, $a_1 < a_2 < \cdots < a_k$ and $(a_i, a_j) = 1$ for $1 \leq i < j \leq k$ and let Γ_k denote the family of those \mathcal{A} with $\Phi_k(\mathcal{A}) = 0$. Further, define $g_k(m,n)$ to be the maximal cardinality of a set $A \in \Gamma_k$ and lying in [m, m+n-1]and write $F_k(n) = g_k(1,n)$ and $G_k(n) = \max_{m \in \mathbb{N}} g_k(m,n)$. Define also the functions $\psi_k(m,n)$ and $\Psi_k(n)$ by $\psi_k(m,n) = |\{u \in \mathbb{N} : u \in [m,n+n-1], u\}|$ divisible by at least one of the first k primes | and $\Psi_k(n) = \psi_k(1,n)$. Finally, let $h_{(k,l)}(m,n)$ denote the maximal cardinality of a set $A \in \Gamma_l$ and lying in [m, n+n-1] with the property that each $a \in \mathcal{A}$ is not divisible by any of the first k primes.

The first author has conjectured that $F_k(n) = \Psi_{k-1}(n)$ for each k and this has been confirmed for $k \leq 4$. In this paper, the authors study the case of general k and prove seven theorems concerning connections between the various functions mentioned above.

M.Nair (Glasgow)

Classification:

11B83 Special sequences of integers and polynomials

Keywords:

sets of coprime integers in intervals; maximal cardinality