Zbl 759.05095

Erdős, Paul; Galvin, Fred

Some Ramsey-type theorems. (In English)

Discrete Math. 87, No.3, 261-269 (1991). [0012-365X]

For any set A let $[A]^r$ denote the collection of r-element subsets of A. By a k-coloring of the r-subsets of A we mean a function $f:[A]^r \to \{1,\ldots,k\}$. A set $X \subset A$ is said to be f-homogeneous if f is a constant on $[X]^r$. The partition symbol $a \to (x)_k^r$ denotes the assertion: given a set A with |A| = aand a coloring $f: [A]^r \to \{1, \dots, k\}$, there is an f- homogeneous set $X \subset A$ with $|X| \leq x$.

The main result of this paper is

Theorem 2.1. Let r and k be positive integers, and let the function $\varphi: \mathbb{N} \to \mathbb{R}$ be such that $n \to (\varphi(n))_{k+1}^r$ holds for all sufficienty large n. Given any coloring $f: [\mathbb{N}]^r \to \{1, \dots, k\}$, there is a set $A \subset \mathbb{N}$ such that: $(1) |\{f(X): X \in [A]^r\}| \le 1$ 2^{r-1} ; (2) $|A \cap \{1, \dots, n\}| \ge \varphi(n)$ for infinitely many n.

J.E. Graver (Syracuse)

Classification:

05D10 Ramsey theory

Keywords:

Ramsey-type theorems; homogeneous set; partition; coloring