Zbl 747.11005

Articles of (and about)

Erdős, Paul; Horváth, M.; Joó, I.

On the uniqueness of the expansions $1 = \sum q^{-n_i}$. (In English)

Acta Math. Hung. 58, No.3/4, 333-342 (1991). [0236-5294]

For a real number 1 < q < 2, consider the equation $1 = \sum_{n=1}^{+\infty} e_n/q^n$, where $e_n = 0$ or 1. The digits e_n can uniquely be determined only if an algorithm is given for the preceding expansion; see [J. Galambos, Representations of real numbers by infinite series (1976; Zbl 322.10002), pp. 3, 13 and 62]. Otherwise, for most q, there are infinitely many ways for obtaining the sequence e_n , $n \ge 1$. The paper is devoted to analyzing the structure and the size of the set $\{e_n, n \geq$ 1) in the absence of an algorithm.

J. Galambos (Philadelphia)

Classification:

11A67 Representation systems for integers and rationals

Keywords:

power series representation; lack of algorithm; non-uniqueness