Burr, Stefan A.; Erdős, Paul

Articles of (and about)

Extremal non-Ramsey graphs. (In English)

Graph theory, combinatorics, algorithms, and applications, Proc. 2nd Int. Conf., San Francisco/CA (USA) 1989, 42-66 (1991).

[For the entire collection see Zbl 734.00014.]

Let $\mathcal{G} = (\mathcal{G}_1, \dots, \mathcal{G}_k)$ be a k-tuple of non-empty sets of graphs. For a graph F, the relation $F \to \mathcal{G}$ indicates that, whenever the edges of F are colored with k colors, there is an index i and graph $G \in \mathcal{G}_i$ so that there is a subgraph of F isomorphic to G with all edges assigned color i. Now let \mathcal{F} be a family of graphs and define $ex(n; \mathcal{F})$ to be the maximum number of edges that a graph on n vertices can have without containing a subgraph isomorphic to a graph in \mathcal{F} . If \mathcal{F} is the set of graphs F so that $F \not\to \mathcal{G}$ we replace $ex(n,\mathcal{F})$ with $ex(n; \neq \mathcal{G}).$

Starting with the simple upper bound:

$$ex(n; \not\to \mathcal{G}) \le \sum_{1 \le i \le h} ex(n; \mathcal{G}_i)$$

the authors prove a variety of interesting equalities and inequalities about $ex(n; \not\to \mathcal{G}).$

J.E. Graver

Classification:

05C75 Structural characterization of types of graphs

05C55 Generalized Ramsey theory

05C35 Extremal problems (graph theory)