Articles of (and about)

Erdős, Paul; Hickerson, Dean; Pach, János

A problem of Leo Moser about repeated distances on the sphere. (In English) Am. Math. Mon. 96, No.7, 569-575 (1989). [0002-9890]

We disprove a conjecture of Leo Moser by showing that (i) for every natural number n and $0 < \alpha < 2$ there is a system of n points on the unit sphere S^2 such that the number of pairs at distance α from each other is at least $\operatorname{const} \cdot n \log^* n$ (where \log^* stands for the iterated logarithm function) (ii) for every n there is a system of n points on S^2 such that the number of pairs at distance $\sqrt{2}$ from each other is at least const $n^{4/3}$. We also construct a set of n points in the plane in general position (no 3 on a line, no 4 on a circle) such that they determine fewer than const $n^{\log 3/\log 2}$ distinct distances, which settles a problem of Erdős.

Classification:

05A05 Combinatorial choice problems 05B30 Other designs, configurations 00A07 Problem books

Keywords:

conjecture of Leo Moser; problem of Erdős