Zbl 732.52004

Avis, David; Erdős, Paul; Pach, János

Distinct distances determined by subsets of a point set in space. (In English) Comput. Geom. 1, No.1, 1-11 (1991). [0925-7721]

Zu $p, q \in \mathbb{R}^d$ sei D(p, q) ihr euklidischer Abstand. Ist S eine endliche Menge des \mathbb{R}^d , so sei D(S) die Menge der verschiedenen Abstände von Punkten p,q $\in S$, $p \neq q$. Sei nun $N_n \subset \mathbb{R}^d$ eine n-elementige Menge und $P_k(N)$ die Menge der k-elementigen Teilmengen von N_n . Ferner sei $h \in \mathbb{N}$ und damit sei $q(N_n, k, h)$ die Anzahl der k-elementigen Mengen $S_k \subset N$ mit $D(S_h) \geq h$. Trivial ist $q(N_n k, h) \leq \binom{n}{k}$. Sei f = f(d, k) die größte Zahl h,derart daß

$$\lim_{n \to \infty} \left[q(N_n, k, h) / \binom{n}{k} \right] = 1$$

gilt für alle Mengenfolgen $(N_n)_{n\in\mathbb{N}}$ n-elementiger Mengen N_n . f(d,k) ist also die größte Zahl h derart, daß für großes n in fast allen k-elementigen Teilengen einer n-elementigen Menge mindestens h verschiedene Abstände vorkommen. Das Hauptresultat der Arbeit ist die explizite Bestimmung von f(d,k). Trivial ist $f(1,k) = f(2,k) = {k \choose 2}$. Für $d \ge 3$ ergibt sich zunächst eine explizite obere Schranke g(d, h) aus einem Beispiel von Lenz. Mit Hilfe von graphentheoretischen Methoden wird q(d,k) > f(d,k) gezeigt.

Eine Verfeinerung der Problemstellung geht auf Erdős und Purdy zurück: Man finde zu gegebenem $i, 0 < i \le {k \choose 2}$ asymptotische Resultate über die maximale Anzahl von k-elementigen Teilmengen S_k n-elementiger Mengen mit $D(S_k) \leq i$. Für dieses Problem gibt es kaum Ergebnisse. Die Autoren zeigen für den Fall d=2 das folgende Resultat: Sei $k=o(n^{1/7})$. Dann haben für genügend großes n fast alle k-elementigen Teilmengen einer n-elementigen Menge $\binom{k}{2}$ verschiedene Abstände.

F. Hering (Dortmund)

Classification:

52C10 Erdoes problems and related topics of discrete geometry

Keywords:

counting distances