Zbl 725.11012

Erdős, Paul; Sárközy, A.

Articles of (and about)

On a problem of Straus. (In English)

Disorder in physical systems, Vol. in Honour of J. M. Hammersley 70th Birthday, 55-66 (1990).

[For the entire collection see Zbl 714.00019.]

If \mathcal{A} is a set of integers with the property that no element a_i is the average of any subset of A consisting of two or more elements, then A is said to be non-averaging. Let f(N) denote the maximum cardinality of a non-averaging subset of $\{0, 1, 2, ..., N\}$. The best estimates for f(N) are due to $\hat{A}.P.Bosznay$ (1989; Zbl 682.10049) and P.Erdős and E.G.Straus (1970; Zbl 216.01503) who showed that $f(N) \gg N^{1/4}$ and $f(N) \ll N^{2/3}$ respectively. In this paper, the authors improve this last estimate to: For $N > N_0$, $f(N) < 403(N \log N)^{1/2}$. Denote by $\mathcal{P}(\mathcal{A})$ the set of distinct integers n which can be represented in the form $n = \sum_{a \in \mathcal{A}} \epsilon_a a$ where $\epsilon_a = 0$ or 1 for all a and $0 < \sum_{a \in \mathcal{A}} \epsilon_a < \infty$. The above estimate for f(N) is obtained via a bound for F(N) which is defined to be the largest k such that there exist two subsets $\mathcal{A} = \{a_1, ..., a_k\}, \mathcal{B} = \{b_1, ..., b_k\}$ of $\{0,1,...,N\}$ with $\mathcal{P}(\mathcal{A})\cap\mathcal{P}(\mathcal{B})=\emptyset$. The infinite analogue of this problem is: If \mathcal{A}, \mathcal{B} are infinite sets of positive integers with $\mathcal{P}(\mathcal{A}) \cap \mathcal{P}(\mathcal{B}) = \emptyset$ then how large can $\min(A(x), B(x))$ be? Here A(x), B(x) are the counting functions of \mathcal{A}, \mathcal{B} respectively. The authors conjecture that

$$\liminf_{x \to \infty} \frac{\min(A(x), B(x))}{x^{1/2}} = 0$$

and show by an interesting construction that the $x^{1/2}$ in the conjecture cannot be replaced by $x^{1/2}(\log x)^{-1/2-\epsilon}$.

M.Nair (Glasgow)

Classification:

11B99 Sequences and sets

05D05 Extremal set theory

00A07 Problem books

Keywords:

non-averaging sets; maximum cardinality