Zbl 714.05033

Erdős, Paul; Faudree, Ralph J.; Rousseau, C.C.; Schelp, R.H.

Subgraphs of minimal degree k. (In English)

Discrete Math. 85, No.1, 53-58 (1990). [0012-365X]

For $k \geq 2$, any graph G with n vertices and $(k-1)(n-k+2)+\binom{k-2}{2}$ edges has a subgraph of minimum degree at least k; however, this subgraph need not be proper. It is shown that if G has at least $(k-1)(n-k+2)+\binom{k-2}{2}+1$ edges, then there is a subgraph H of minimal degree k that has at most $n-\sqrt{n}/\sqrt{6k^3}$ vertices. Also, conditions that insurethe existence of smaller subgraphs of minimum degree k are given.

Classification:

05C35 Extremal problems (graph theory)

Keywords:

subgraph of minimum degree