Zbl 668.05037

Erdős, Paul; Hajnal, András

On the number of distinct induced subgraphs of a graph. (In English)

Discrete Math. 75, No.1-3, 145-154 (1989). [0012-365X]

Let i(G) be the number of pairwise non-isomorphic induced subgraphs of graph $G = \langle V, E \rangle$. The graph $G = \langle V, E \rangle$ is ℓ -canonical if there is a partition $\langle A_i \subset V : 0 \leq i < \ell \rangle$ such that $\{x,y\} \in E \Leftrightarrow \{x',y'\} \in E$ for all i,j < 1, $x,x' \in A,y,y' \in A$. The graph $G = \langle V,E \rangle$ is (ℓ,m) -almost canonical if there is an ℓ -canonical graph $G_0 = \langle V,E_0 \rangle$ such that all components of symmetric difference of G and G_0 (denoted by $G_\Delta G_0 = \langle V,E_\Delta E_0 \rangle$) have sizes at most m.

The authors and (independently) N. Alon and B. Bollobás prove the following result. Let $i(G) = o(n^2)$. Then one can omit o(n) vertices of G in such a way that the remaining graph is either complete or empty. In the paper the following stronger theorem is proved.

Theorem 1. For all $\epsilon > 0$ and for all $k \geq 1$ there exists a $\delta > 0$ such that for all n and for all G with n vertices $i(G) \leq \delta n^{k+1}$ it follows that these exists a $W \subset V$, $|W| \leq \epsilon n$, such that $G[V \setminus W]$ is (ℓ, m) -almost canonical for some ℓ , m satisfying $\ell + m$, k + 1. In addition the following estimation is obtained.

Theorem 2. Let G be a graph with n vertices, c > 0, $k > 2c \log 2$ and $K_{c \log n, c \log n} \not\subset G, \bar{G}$, where $K_{n,m}$ is bipartite graph, \bar{G} is the complement of G. Then for every sufficiently large n, $i(G) \geq 2^{n/4k}$.

Yu.M. Voloshin

Classification:

05C35 Extremal problems (graph theory)

05C30 Enumeration of graphs and maps

Keywords:

induced subgraphs