Zbl 659.05079

Articles of (and about)

Erdős, Paul; Godsil, C.D.; Krantz, S.G.; Parsons, T.D.

Intersection graphs for families of balls in \mathbb{R}^n . (In English)

Eur. J. Comb. 9, No.5, 501-506 (1988). [0195-6698]

Let B(x,r) denote a ball, (either open or closed) of radius r>0 and center x, in the Euclidean space \mathbb{R}^n . Let $\mu[A]$ be the n-dimensional Lebesgue volume of the subset A of \mathbb{R}^n and let ϵ denote a real number in (0,1]. A pair of balls B,B' are said to be ϵ -disjoint if $\mu(B\cap B')\leq (1-\epsilon)\min\{\mu(B),\mu(B')\}$. A family F of balls is ϵ -disjoint, if the balls are pairwise ϵ -disjoint. Denote by $\Gamma_{n,\epsilon}$ the set of all intersection graphs $\Gamma(F)$ for ϵ -disjoint families F of balls in \mathbb{R}^n . The authors show that there exists a least integer $d = d(n, \epsilon)$ such that every graph in $\Gamma_{n,\epsilon}$ has a vertex of degree at most d and also show that there exists a least integer m = m(n) such that every intersection graph $\Gamma(F)$, where F is a family of balls, has a vertex v such that the subgraph induced by the vertices adjacent to v contains no independent set of size greater than m.

R.C.Entringer

Classification:

05C99 Graph theory

Keywords:

epsilon-disjoint; ball; Euclidean space; intersection graph