Zbl 656.05039

Avis, David; Erdős, Paul; Pach, János

Repeated distances in space. (In English)

Graphs Comb. 4, No.3, 207-217 (1988). [0911-0119]

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of n points in R^d , $d \geq 2$, and let $R = \{r_1, r_2, ..., r_n\}$ be a set of n positive real numbers. The repeated distance graph $G_d(X, R)$ is the directed graph on the point set X with edges (x_i, x_j) whenever $d(x_i, x_j) = r_i/d$ denotes Euclidean distance.

The authors present bounds on the maximum number of edges that $G_d(X, R)$ can have. In addition, it is shown that

$$\frac{n^2}{4} + \frac{3n}{2} \le f(3,d) \le \frac{n^2}{4} + \frac{3n}{2} + 255,$$

where f(3,d) is the maximum number of edges of $G_3(X,R)$ in which $r_i = \max_{i \neq j} d(x_i, x_j)$ holds.

P.Horák

Classification:

05C35 Extremal problems (graph theory)

05C20 Directed graphs (digraphs)

05C38 Paths and cycles

Keywords:

furthest neighbor graph; repeated distance graph