Zbl 648.40001

Erdős, Paul; Joó, I.; Székely, L.A.

Some remarks on infinite series. (In English)

Stud. Sci. Math. Hung. 22, No.1-4, 395-400 (1987). [0081-6906]

The authors prove four theorems.

Articles of (and about)

- (1) Suppose $a_n > 0$, $a_n \ge a_{n+1}$, $\sum_{1}^{\infty} a_n = \infty$. Then for every c > 0, $\sum_{k=1}^{\infty} a_{n_k(c)}$ are equiconvergent, where $n_{k(c)}(c)$ is the minimal m such that $kc \le \sum_{j=1}^{m} a_j$.
- (2) Suppose $a_n > 0$, $\sum a_n = \infty$. (i) If (a_n) has a majorant $(b_n) \in \ell_2$ with $b_n \geq b_{n+1}$ for $n \geq 1$, then there exists a sequence of natural numbers $N_0 = 0$, $N_i \nearrow \infty$, such that (*) $\sum_{j=N_i+1}^{N_{i+1}} a_j \ge \sum_{j=N_{i+1}+1}^{N_{i+2}} a_j$ (i=0,1,2,...); (ii) If $a_n \ge a_{n+1}$ for $n \ge 1$ then there exists a series $\sum b_n$ having no decomposition (*) and $1/3 < a_n/b_n < 3$.
- (3) Suppose $a_n > 0$, $\sum a_n = \infty$. If $\sum a_n^2 < \infty$ then $X = ^{def} \{c : \sum_{k=1}^{\infty} a_{n_k(c)} = \infty\}$ is of measure zero, and if $\sum a_n^2 = \infty$, then $Y = ^{def} \{c : \sum_{k=1}^{\infty} a_{n_k(c)} < \infty\}$ is meagre (i.e. of first category).
- (4) X can be residual, and Y can be of cardinality continuum.

B.Crstici

Classification:

40A05 Convergence of series and sequences

Keywords:

decomposition of series