Zbl 629.05006

Aigner, M.; Erdős, Paul; Grieser, D.

On the representing number of intersecting families. (In English)

Arch. Math. 49, 114-118 (1987). [0003-889X]

The paper presents a generalization of well-known results: Theorems of Erdős-Ko-Rado (1961) and Hilton-Milner (1967). Let \mathcal{M} be a family of sets, and R a single set. R is said to represent \mathcal{M} or be a representing set for \mathcal{M} if $R \cap X \neq 0$ for all $X \in \mathcal{M}$ has representing number r if r is the cardinality of a smallest set representing. Let $\binom{M}{k}$ denote the collection of all k-subsets of a finite set. A family is intersecting if any two members of it have a nontrivial intersection. Theorem. Denote by g(n;r,k) the maximal cardinality of an intersecting family $\mathcal{M} \subseteq \binom{M}{k}$ of an n-set with representing number r, $1 \leq r \leq k \leq n$. Then there are constants $c_{r,k}$, $C_{r,k}$ only depending on r and k, such that $c_{r,k}n^{k-r} \leq g(n;r,k) \leq C_{r,k}n^{k-r}$. The precise value of $g(n;i,k) = \binom{n-1}{k-1}$ and $g(n;2,k) = \binom{n-1}{k-1} - \binom{n-k-1}{k-1}$ are given by Theorems Erdős-Ko-Rado and Hilton-Milner, correspondingly. Some estimations of g(k) = g(n;k,k), which for $n \geq n_0(k)$ is independent of n, are obtained. The authors put the following questions: first, improve the bounds on g(k), second, estimate the value of $n_0(k)$. See also: I. Anderson and A. J. W. Hilton, The Erdős-Ko-Rado theorem with valency conditions, Q. J. Math., Oxf. II. Ser. 37, 385-390 (1986; Zbl 619.05037).

Yu.M. Voloshin

Classification:

05A17 Partitions of integres (combinatorics)

05A05 Combinatorial choice problems

04A20 Combinatorial set theory

Keywords:

extremal set theory; family of subsets; family of sets; intersection