Zbl 617.20045

Articles of (and about)

Beasley, L.B.; Brenner, J.L.; Erdős, Paul; Szalay, M.; Williamson, A.G.

Generation of alternating groups by pairs of conjugates. (In English)

Period. Math. Hung. 18, 259-269 (1987). [0031-5303]

Let A_n denote the alternating group of degree n. The main result of the paper is the following Theorem 3.05. Almost all conjugacy classes of A_n contain a pair of generators. (In other words, the proportion of conjugacy classes in A_n that contain a pair of generators approaches 1 as $n \to \infty$.)

The main theorem required the proof of the following Theorems 2.04 and 3.04. Let C be a conjugacy class (in the symmetric group of degree n) of type T = $1^{e(1)}2^{e(2)}3^{e(3)}...$ If T is not the type of an involution, and if the relation $\sum_{j\geq 1} e(j) \leq n/2$ holds, then C contains a pair of elements that generate a primitive group. Almost all partitions of n have a summand > 1 and relatively prime to the other summands.

L.B.Beasley

Classification:

20P05 Probability methods in group theory

20F05 Presentations of groups

11P81 Elementary theory of partitions

20D06 Simple groups: alternating and classical finite groups

20D60 Arithmetic and combinatorial problems on finite groups

20B35 Subgroups of symmetric groups

11N45 Asymptotic results on counting functions for other structures

Keywords:

alternating group; conjugacy classes; pair of generators; partitions