Zbl 603.05023

Articles of (and about)

Erdős, Paul; Saks, Michael; Sós, Vera T.

Maximum induced trees in graphs. (In English)

J. Comb. Theory, Ser. B 41, 61-79 (1986). [0095-8956]

The paper studies t(G) = maximum size of a subset of vertices of a graphthat induces a tree. Upper and lower bounds are established in terms of other invariants of G. There is a lower bound in terms of the radius: $t(G) \geq 2\text{rad}(G)$ 1. With α being the independence number and $1 \leq m \leq (n-1)/2$ holds: $\alpha(G) > ((m-1)n)/m+1 \text{ implies } t(G) \ge 2m+1 \text{ and } \alpha(G) > ((m-1)n+1)/m+1$ implies t(G) > 2m + 2, these bounds being best possible (m = |E(G)|, n =|V(G)|. Let $f(n,\rho) = \text{minimum of } t(G) \text{ over all graphs } G \text{ with } n \text{ vertices and }$ $n+\rho-1$ edges. Upper and lower bounds for $f(n,\rho)$ are obtained resulting in an almost complete description of the asymptotic behavior of $f(n, \rho)$. This shows that $f(n, \rho)$ is of a surprisingly small order. Relations between t(G) and the maximum clique size are proved: For $k \geq 3$, $t \geq 2$ there is a minimum integer N(k,t) such that every connected graph with at least N(k,t) vertices has either a clique of size k or an induced tree of size t. For N(k,t) bounds are derived. Finally, the problem "For given G and t is t(G) > t?" is NP complete.

W.Dörfler

Classification:

05C35 Extremal problems (graph theory)

05C05 Trees

Keywords:

induced tree; NP completeness; radius; independence number