Zbl 588.10056

Erdős, Paul; Sárközy, A.; Sós, V.T.

Problems and results on additive properties of general sequences. IV. (In English)

Number theory, Proc. 4th Matsci. Conf., Ootacamund/India 1984, Lect. Notes Math. 1122, 85-104 (1985).

[For the entire collection see Zbl 547.00014. - Part I, see the first and second author, Pac. J. Math. 118, 347-357 (1985; Zbl 569.10032).]

Let $\mathcal{A} = \{a_1 < a_2 < ...\}$ be an infinite sequence of positive integers and $R_1(n)$, $R_2(n)$, $R_3(n)$ denote the number of solutions of $a_x + a_y = n$, $a_x \in \mathcal{A}$, $a_y \in \mathcal{A}$ in the cases: no restriction, x < y, $x \le y$, respectively. It turns out that these functions behave quite different according to monotonicity.

The authors show that $R_1(n)$ is monotonous increasing iff \mathcal{A} consists of all the integers from a point onwards. Denoting the number of elements of \mathcal{A} up to n by A(n) they construct sequences \mathcal{A} such that $R_2(n)$ is monotonous increasing and $A(n) < n - cn^{1/3}$. There is no corresponding result for $R_3(n)$, however it is proved that $R_3(n)$ and $R_2(n)$ cannot be monotonous increasing when $A(n) = o(n/\log n)$. The authors conjecture that this is true with A(n) = o(n).

A. Balog

Classification:

11P99 Additive number theory

11B13 Additive bases

05B10 Difference sets

00A07 Problem books

Keywords:

number of additive representations; infinite sequence of positive integers; monotonicity