Zbl 576.41022

Anderson, J.M.; Erdős, Paul; Pinkus, Allan; Shisha, Oved The closed linear span of $\{x^k - c_k\}_1^{\infty}$. (In English)

J. Approximation Theory 43, 75-80 (1985). [0021-9045]

Several easily verified conditions on a sequence $(c_k)_1^{\infty}$ of real numbers are given which imply that the sequence of functions $(x^k - c_k)_1^{\infty}$ is total in C[0,1]. This problem is equivalent to demanding that the function $f(x) \equiv 1$ belongs to the closed linear hull of $(x^k - c_k)_1^{\infty}$ in C[0,1]. For instance, if the sequence $(c_k)_1^{\infty}$ is such that for all $k \geq M$, $\epsilon(-1)^k(c_k-c) \geq 0$, where $c \in \mathbb{R}$ and $\epsilon \in \{-1,1\}$, fixed, and if $c_k - c \not\equiv 0$, then $(x^k - c_k)_1^{\infty}$ is total in C[0,1]; if, in addition, $c_k \neq c$ for infinitely many k, with the help of Chebyshev polynomials an effective approximation to $f(x) \equiv 1$ in C[0,1] by finite linear combinations of the $x^k - c_k$ is given. Another condition is: $|c_{n_k} - c|^{1/n_k} \to 0$ as $k \to \infty$, where the subsequence $(n_k)_1^{\infty}$ satisfies the Müntz condition $\sum_{k=1}^{\infty} (n_k)^{-1} = \infty$ and $c_k \not\equiv c$; in the case when $|c_k|^{1/k} \to 0$ as $k \to \infty$, again, a good approximation to $f(x) \equiv 1$ is explicitly constructed.

F. Haslinger

Classification:

41A65 Abstract approximation theory

Keywords:

Chebyshev polynomials; Müntz condition