Zbl 576.05019

Erdős, Paul; West, Douglas B.

Articles of (and about)

A note on the interval number of a graph. (In English)

Discrete Math. 55, 129-133 (1985). [0012-365X]

Three results on the interval number i(G) and d-dimensional interval number $i_d(G)$ of a graph G with n vertices are presented. Theorem 1. The inequalities $i(G) \geq n/4lg_2n$, $i_d(G) \geq n/4dlg_2n$ hold for almost every graph (i.e. the probability, that the lower bounds hold, goes to 1 as $n \to \infty$ in the probability spaces containing all graphs on n vertices, each of them with the same probability). The first lower bound is also asymptotically true for almost every bipartite graph. Theorem 2. There exist $K_{m,n}$ -free bipartite graphs with interval number at least $c(m) \cdot n^{1-2(m+1)}/lg_2n$, which can be improved to $\sqrt{n}/4 + o(\sqrt{n})$ for m=2 and $(n/2)^{2/3}/lg_2n$ for m=3. Theorem 3. There exist regular graphs of girth at least g with interval number at least $((n-1)/2)^{1/(g-2)}$.

M.Koman

Classification:

05C10 Topological graph theory

60C05 Combinatorial probability

Keywords:

interval number; almost every graph; lower bounds; bipartite graphs; regular graphs