Zbl 536.10007

Articles of (and about)

Erdős, Paul; Guy, R.K.; Selfridge, J.L.

Another property of 239 and some related questions. (In English)

Numerical mathematics and computing, Proc. 11th Manitoba Conf., Winnipeg/Manit. 1981, Congr. Numerantium 34, 243-257 (1982).

[For the entire collection see Zbl 532.00008.]

Regarding the decomposition $n! = a_1 a_2 ... a_k$ of n! into k factors the authors prove the following three interesting theorems:

Theorem 1. If n > 239 there is no factorization with $n < a_1 < a_2 < ... < a_k \le 2n$.

Theorem 2. For every n > 13 there is a factorization with $n < a_1 \le a_2 \le ... \le a_k \le 2n$.

Theorem 3. Let f(n) denote the smallest integer a_k for which there exists a factorization with $n < a_1 < a_2 < ... < a_k$. Then there are constants $0 < c_1 < c_2$ such that

$$2n + c_1 n / \log n < f(n) < 2n + c_2 n / \log n$$
.

Besides they ask many interesting open questions.

K.Ramachandra

Classification:

11A25 Arithmetic functions, etc.

11A41 Elemementary prime number theory

05A10 Combinatorial functions

Keywords:

factors of n factorial