Zbl 531.05042

Chung, F.R.K.; Erdős, Paul; Spencer, Joel

On the decomposition of graphs into complete bipartite subgraphs. (In English) Studies in pure mathematics, Mem. of P. Turán, 95-101 (1983).

[For the entire collection see Zbl 512.00007.]

A B-covering (respectively B-decomposition) of a graph G is a collection of complete bipartite graphs G_i such that any edge of G is in at least (respectively exactly) one $G_i(i=1,2,...,t)$. Let $\beta(G;B)$ (respectively $\alpha(G;B)$) denote the minimum value of $\sum_{i=1}^{t} |V(G_i)|$ over all B- coverings (respectively B-decompositions) of G. Let $\beta(n;B)$ (respectively $\alpha(n;B)$) denote the maximum value of $\beta(G;B)$ (respectively $\alpha(G;B)$) as G ranges over all graphs on n vertices. "In this paper we show that, for any positive ϵ , we have

$$(1 - \epsilon) \frac{n^2}{2e \log n} < \beta(n; B) \le \alpha(n; B) < (1 + \epsilon) \frac{n^2}{2 \log n},$$

where e is the base of the natural logarithms, provided n is sufficiently large." A number of related questions and conjectures are discussed. For example, if G_n denote the set of the $2^{\binom{n}{2}}$ labelled graphs on n vertices, it is conjectured that

$$\lim_{n \to \infty} \sum_{G \in G_n} \alpha(n; B) / 2^{\binom{n}{2}} n^2 / \log n$$

exists.

W.G.Brown

Classification:

05C35 Extremal problems (graph theory)

05C99 Graph theory

60C05 Combinatorial probability

Keywords:

decomposition; covering; bipartite graph