Zbl 525.10023

Erdős, Paul; Pomerance, Carl

An analogue of Grimm's problem of finding distinct prime factors of consecutive integers. (In English)

Util. Math. 24, 45-65 (1983). [0315-3681]

For n natural number, let f(n) denote the largest integer such that for each $m \in \{n+1,\ldots,n+f(n)\}$ there is a divisor d_m of m with $1 < d_m < m$ and such that the d_m 's are all different. The authors prove that for every $\varepsilon > 0$,

$$n^{1/2} \ll f(n) \ll n^{1/12 + \varepsilon}.$$

The lower bound is then strengthened to (1) $\liminf f(n)^{1/2} \ge 4$. Moreover, equality holds in (1) if and only if there are infinitely many twin primes. Several other related results are also given.

S.W.Graham

Classification:

11N05 Distribution of primes

Keywords:

distinct prime factors of consecutive integers; Grimm conjecture