Erdős, Paul; Simonovits, M.

Articles of (and about)

Compactness results in extremal graph theory. (In English)

Combinatorica 2, 275-288 (1982). [0209-9683]

(From the authors' abstract:) "Let L be a given family of ... 'prohibited graphs'. Let ex(n, L) denote the maximum number of edges a simple graph of order n can have without containing subgraphs from L. A typical extremal graph problem is to determine ex(n, L), or, at least, to find good bounds on it. Results asserting that, for a given L, there exists a 'much smaller' $L^* \subset L$ for which $ex(n, L) \approx ex(n, L^*)$ will be called compactness results. The main purpose of this paper is to prove some compactness results for the case when L consists of cycles. One of our main tools will be finding lower bounds on the number of paths p^{k+1} in a graph on n vertices and E edges ... a 'supersaturated' version of a well known theorem of Erdős and Gallai."

Among the theorems proved, presented in the context of open conjectures, are: Theorem 1: Let k be a natural number. Then $ex(n, \{C^3, \dots, C^{2k}, C^{2k+1}\}) \le$ $(n/2)^{1+(1/k)} + 2^k \cdot (n/2)^{1-(1/k)}$. Theorem 2: $ex(n, \{C^4, C^5\}) = (n/2)^{3/2} + 0(n)$. Theorem 3^* : Let T be a tree with a fixed 2-colouring: A graph L is obtained from T by joining a new vertex to each vertex of one colour class by disjoint paths, each k edges long. Then, if $ex(n, L) > cn^{1+(1/k)}$, then is a t for which

$$\lim_{n \to \infty} (ex(n, \{L, C^3, C^5, \dots\}) / ex(n, \{L, C^3, C^5, \dots, C^{2_{t-1}}\})) = 1$$

Theorem 5: If f(n,d) is the minimum number of walks W^{k+1} a graph G^n can have with average degree d, then every graph of order n and average degree dcontains at least $(1/2) \cdot f(n,d) - 0(f(n,d))$ paths p^{k+1} , as $d \to \infty$.

W.G.Brown

Classification:

05C35 Extremal problems (graph theory)

05C38 Paths and cycles

05C15 Chromatic theory of graphs and maps

Keywords:

extremal graph; compactness; supersaturated; disjoint paths