Zbl 497.10033

Erdős, Paul; Turk, J.

Articles of (and about)

Products of integers in short intervals. (In English)

Acta Arith. 44, 147-174 (1984). [0065-1036]

The following properties of distinct integers, say n_1,\ldots,n_f , from a "short" interval [n,n+k(n)], where k(n) is a "small" function of n (such as $n^{\frac{1}{2}}$, or $\log n$) and $n\geq 1$ is arbitrary, are considered: (1) The product of n_1,\ldots,n_f is a perfect power $(\prod_{i=1}^f n_i\in\mathbb{N}^m)$ for som $m\geq 2$. (2) Two distinct subsets of $\{n_1,\ldots,n_f\}$ yield the same product $(\prod_{i\in I_1} n_1=\prod_{i\in I_2} n_i)$. (3) n_1,\ldots,n_f are multiplicatively dependent $(\prod_{i\in I_1} n_1^{m_i}=\prod_{i\in I_2} n_i^{m_i})$ for certain $m_i\in\mathbb{N}$). (4) The total number of distinct primes occurring in the prime factorizations of the integers n_1,\ldots,n_f is less than the number integers $(\omega(\prod_{i=1}^f n_i)< f)$. Our results can be summarized as follows: the above properties never occur in "very short" intervals, sometimes in "short" intervals and always in "large" intervals. For example, distinct sets of integers from $[n,n+c_1(\log n)^2(\log\log n)^{-1}]$ have distinct products for any $n\geq 3$, for infinitely many $n\in\mathbb{N}$ this also holds for $[n,n+\exp(c_2(\log n\log\log n)^{\frac{1}{2}})]$, but for infinitely many $n\in\mathbb{N}$ there exists two distinct sets of integers in $[n,n+\exp(c_3(\log n\log\log n)^{\frac{1}{2}})]$, with equal products and for all $n\in\mathbb{N}$ the latter holds for $[n,n+c_4n^{0.496}]$. The c_1,c_2,c_3,c_4 are absolute positive constants.

 $P.Erd\H{o}s$

Classification:

11N05 Distribution of primes

11D41 Higher degree diophantine equations

11D61 Exponential diophantine equations

Keywords:

distinct sets of integers; distinct products; equal products; consecutive integers; integers in short intervals; products of integers; perfect powers