Zbl 492.10037

Erdős, Paul; Sárkőzy, András

Some asymptotic formulas on generalized divisor functions. III. (In English) Acta Arith. 41, 395-411 (1982). [0065-1036]

Die Verfasser setzen ihre früheren Untersuchungen [Teil I, Turá- Gedenkband der Ungarischen Akademie der Wissenschaften (erscheint demnächst); Teil II, J. Number Theory 15, 115-136 (1982; Zbl 488.10043)] fort mit dem Ziel, für Teilmengen $A \subset \mathbb{N}$ Aussagen über die Größenordnung von $D_A(x)m \max_{a \in A, a < x} d_A(n)$, wobei $d_A(n) = \sum_{d|n,d \in A} 1$ ist, zu erhalten. Mißt $f_A(x) = \sum_{a \in A, a < x}^{1 \le n \le x} \frac{1}{a}$ die "Dichte" von A, so sind die Verfasser daran interessiert, ob $D_A(x)/f_A(x)$ unbeschränkt sein kann. Sie zeigen: Für jedes $\omega > 0$ gilt: Ist $x > X_0(\omega)$ fixiert, so hat die Bedingung (*) $f_A(x) > (\log \log x)^{20}$ die untere Abschätzung $D_A(x) > \omega \cdot f_A(x)$ (für denselben Wert von x) zur Folge. [Die Verfasser skizzieren, daß sich der Exponent 20 in (*) noch erheblich verbessern läßt.]

Weiterhin: Zu jedem $\omega > 0$ gibt es ein $X_4(\omega)$, so daß für $x > X_4D_A(x) >$ $\omega \cdot f_A(x)$ gilt, falls nur $f_A(y) > 22 \log \log \log y$ ist, wobei $y = \exp \{\log x \cdot g\}$ $(\log \log x)^{-21}$ ist. Und, um die Schärfe des vorangehenden Satzes zu beleuchten: Es gibt positive Konstanten c', c'', X_5 und eine unerhebliche Folge $A \subset \mathbb{N}$, für die $f_A(x) > c' \cdot \log \log \log x$ für alle $x > X_5$ ist, aber zugleich $\liminf_{x\to\infty} D_A(x)/f_A(x) < c''$ gilt.

W.Schwarz

Classification:

11N37 Asymptotic results on arithmetic functions

Keywords:

generalized divisor function; lower bounds for divisor function