Zbl 488.10045

Articles of (and about)

Erdős, Paul; Nicolas, Jean-Louis

Grandes valeurs d'une fonction liée au produit d'entiers consecutifs. Large values of a function related to the product of consecutive integers. (In French)

Ann. Fac. Sci. Toulouse, V. Ser., Math. 3, 173-199 (1981). [0240-**2955**]

Define f(n) to be the largest integer k for which there is an m such that n|(m+1)1) ... (m+k) but $n \not| (m+j)$ for $1 \le j \le k$. The authors prove that $\sum_{n \le x} f(n) \sim$ $x \log \log x$ and that $\max_{n \le x} f(n) = \frac{e^{\gamma/2} \log x}{2(\log \log x)^{1/2}} + \frac{\gamma e^{\gamma} \log x}{4 \log \log x} (1 + o(1))$, where γ is Euler's constant. Define n to be f-highly aboundant if for every n' < n, f(n') < nf(n). The authors make a detailed study of the prime factors of f-highly aboundant numbers. The results show similarity with the highly composite numbers of Ramanujan, but there are some differences. For example, there are large gaps in the factorization of f-highly aboundant numbers.

S. W.. Graham

Classification:

11N37 Asymptotic results on arithmetic functions

11N05 Distribution of primes

Keywords:

large values of functions; product of consecutive integers; prime factors of fhighly abundant numbers