Zbl 472.28009

Mauldin, R.Daniel; Erdős, Paul

Rotations of the circle. (In English)

Measure theory, Proc. Conf., Oberwolfach 1979, Lect. Notes Math. 794, 53-56 (1980).

[For the entire collection see Zbl 418.00006.]

The paper is addressed to the following questions: Let T be the unit circle and suppose S_1, S_2 are subsets such that for each i=1,2 there is an infinite subset R_i of R so that the sets $rS_i(r \in R_i)$ are pairwise disjoint. Is it true that $S_1 \cup S_2$ has inner Lebesgue measure 0? The answer is yes, and two proofs are given. The first proof is a simple application of the amenability of T as discrete group, and extends to arbitrary locally compact groups which are amenable as discrete groups, and to k sets S_1, S_2, \ldots, S_k instead of two. The second proof is more elementary and based on a counting argument. Several problems are given which arise from consideration of these proofs.

W.Moran

Classification:

28C10 Set functions and measures on topological groups

28D05 Measure-preserving transformations

43A05 Measures on groups, etc.

28A99 Classical measure theory

Keywords:

translation; amenable group; unit circle; inner Lebesgue measure 0