Articles of (and about)

## Erdős, Paul

Some extremal problems on divisibility properties of sequences of integers. (In English)

## Fibonacci Q. 19, 208-213 (1981). [0015-0517]

The author studies various properties of subsets  $A = \{a_1 < a_2 < \cdots < a_k \le n\}$ of integers from 1 to n. The sequence A is said to have the property  $P_r(n)$  if no  $a_i$  divides the product of r of the others. A is said to have the property P(n)if no  $a_i$  divides the product of the others. It is said to have the property Q(n)if the products  $a_i a_j$  are all distinct. To his results in [Izv. Nauk. Inst. Mat. Mekh. Univ. Tomsk 2, 74-82 (1938; Zbl 020.00504)] he adds further results in this paper. to state them he defines some arithmetical functions. Let  $S_n$  denote all the integers from 1 to n. Let  $f_r(n)$  denote the smallest integer such that  $S_n$  can be decomposed into g(n) sets each with the property Q(n). The author proves the results  $2n^{1/2} > f_r(n) \gg n^{1/2}/\log n$  and  $2n^{1/2} > g(n) \gg n^{1/3}/\log n$ . Next he proves the results that for every  $\varepsilon > 0$ , there holds  $n^{1-1/r} \gg f_r(n) \gg n^{1/3}/\log n$ .  $\varepsilon^{n^{1-(1/r)-\varepsilon}}$ . Another result about the divisor properties is that if A has the property that the product of any two  $a_i$  is a multiple of all the others, then  $\log(\max k)$  is asymptotic to  $\left(\frac{2\log 2}{3}\right)\frac{\log n}{\log\log n}$  as  $n\to\infty$ . I wish to quote on more result. Let F(n) be the smallest integer for which  $S_n$  can be decomposed into F(n) sets  $\{A_i\} 1 \leq i \leq F(n)$  each having the property P. Then

$$F(n) = n \text{Exp}((-c + o(1))(\log n \log \log n)^{1/2}).$$

The author discusses many other deep results about sets A with  $a_i + a_j$  all distinct and so on. As usual the paper is full of interesting problems and partial solutions (sometimes complete solutions) and i would request the readers to consult the paper for more details.

K.Ramachandra

## Classification:

11B83 Special sequences of integers and polynomials

11B05 Topology etc. of sets of numbers

11B13 Additive bases

## Keywords:

extremal problems; divisibility properties; sequences of integers