Zbl 458.05045

Burr, Stefan A.; Erdős, Paul; Faudree, Ralph J.; Rousseau, C.C.; Schelp, R.H.

An extremal problem in generalized Ramsey theory. (In English)

Ars Comb. 10, 193-203 (1980). [0381-7032]

Chvátal proved that the Ramsey number $R(K_m,T)$ of a complete graph on m vertices and a tree on n vertices is given by (m-1)(n-1)+1. In this article, the authors consider connected graphs on n vertices and q edges satisfying the equation $R(K_m, G) = (m-n)(n-1) + 1$. Such graphs are called m-good. They then define f(m,n) as the largest q for which every connected graph on n vertices and q edges is m-good. Similarly, g(m,n) is the largest q for which there exist a connected m-good graph on n vertices with q edges. The authors then establish the following bounds: 1. For all $n \ge 4$, $f(3,n) \ge (17n+1)/15$, 2. For every $\varepsilon > 0$, if n is sufficiently large, then $f(3,n) < (27/4 + \varepsilon)n(\log n)^2$, 3. There exist positive constants A, B so that: $An^{3/2}(\log n)^{1/2} < g(3,n) <$ $Bn^{5/3}(\log n)^{2/3}$ for all n sufficiently large. the authors also pressent vounds for f(m,n) and g(m,n) for arbitrary m and pose the question of determining whether $f(n)/n \to \infty$ as $n \to \infty$.

W. Trotter

Classification:

05C55 Generalized Ramsey theory

Keywords:

Ramsey number