Zbl 432.05038

Articles of (and about)

Burr, Stefan A.; Erdős, Paul; Faudree, Ralph J.; Schelp, R.H.

A class of Ramsey-finite graphs. (In English)

Proc. 9th southeast. Conf. on Combinatorics, graph theory, and computing, Boca Raton 1978, 171-180 (1978).

[For the entire collection see Zbl 396.00003.]

The notation  $F \to (G, H)$  is used to imply that if the edges of Fare colored with two colors, say red and blue, then either there exists a red copy of G or a blue copy of H. The class of all graphs F or which  $F \to (G, H)$  is denoted R'(G,H). The class of minimal graphs in R'(G,H) is denoted R(G,H). The authors show that if G is an aritrary graph on n vertices and m is a positive integer, then whenever  $F \in R(mK_2, G)$ , we always have  $|E(F)| \leq \sum_{i=1}^b n^i$ where  $b = (m-1)(\binom{2m-1}{2})+1+1$ . As a corollary, they conclude that he class  $R(mK_2,G)$  is finite. It should be noted that there are large classes of graphs for which R(G,H) is infinite but few nontrivial examples are known where R(G, H) is finite.

W.T.Trotter

Classification: 05C55 Generalized Ramsey theory Keywords: minimal graphs