Zbl 401.10068

Erdős, Paul; Sarközy, A.

On products of integers. II. (In English)

Acta Sci. Math. 40, 243-259 (1978). [0001-6969]

Let k, n be any positive integers. $A = \{a_1, \ldots, a_n\}$ any finite, strictly increasing sequence of positive integers satisfying (*) $a_1 = 1, a_2 = 2, \ldots a_k = k$. Let us denote the number of integers which can be written in the form $\prod_{i=1}^n a_i^{\varepsilon_i} (\varepsilon_1 = 0 \text{ or } 1)$ or $a_i a_j$ $(1 \leq i, j \leq n)$, respectively by f(A, n, k) and g(A, n, k). Let us write $F(n, k) = \min_A f(A, n, k)$ and $G(n, k) = \min_A g(A, n, k)$, where the minima are extended over all sequence A satisfying (*) and |A| = n. The authors conjectured in an earlier paper [Studia Sci. Math. Hung. 9, 161-171 (1974; Zbl 304.10034)] that $(1) G(n, k)/n > c_1$. G(k, k)/k for every $n \geq k$, and furthermore, that for any $\omega > o$, $k > k_0(\omega)$ and $n \geq k$, we have $F(n, k) > n^2 k^\omega$ or perhaps (2) $n^2 \exp\left(\frac{c_2 k}{\log k}\right) < F(n, k) < n^2 \exp(c_3 k/\log k)$ for large k and $n \geq k$. In this paper, the authors disprove (1) and prove a slightly weaker form of (2).

D.Suryanarayana

Classification:

11B83 Special sequences of integers and polynomials

11N13 Primes in progressions

Keywords:

products of integers; distribution in sequences