Zbl 399.10042

Erdős, Paul; Penney, D.E.; Pomerance, Carl

On a class of relatively prime sequences. (In English)

J. Number Theory 10, 451-474 (1978). [0022-314X]

For each $n \ge 1$ let $a_0(1) = n$ and define $a_{i+1}(n) > a_i(n)$ inductively as the least integer coprime to $a_i(n)$ for $0 \le j \le i$. Let g(n) be the largest $a_i(n)$ which is neither a prime n or the square of a prime. It is shown here that $g(n) \sim n$ and that $g(n) - n \gg m^{1/2} \log n$. The true order of magnitude of g(n) - n remains unsettled, and some relevant computations are discussed. Other results on the sequence $a_i(n)$ are given, extending work of P. Erdős [Math. Mag. 51, 238-240] (1978; Zbl 391.10004)]. The following result occurs incidentally in one of the proofs: if n is large enough $\lfloor n/p \rfloor$ is composite for some prime $p < n^{1/2}$.

R.Heath-Brown

Classification:

11N05 Distribution of primes

11B83 Special sequences of integers and polynomials

order of magnitude; distribution of integers; relatively prime sequences