Zbl 381.04004

Erdős, Paul; Hajnal, András

Articles of (and about)

Embedding theorems for graphs establishing negative partition relations. (In English)

Period. Math. Hung. 9, 205-230 (1978). [0031-5303]

The graph G_1 is said to embed into the graph G_1 if G_0 is isomorphic to a spanned subgraph of G_1 . Given cardinal numbers \varkappa and λ , the symbol $[\varkappa]$ denotes the complete graph on \varkappa vertices, $[\varkappa\lambda]$ the complete $(\varkappa\lambda)$ - bipartite graph and , $[\varkappa/\varkappa]$ the half (\varkappa/\varkappa) - bipartite graph (where the set of vertices is a disjoint union $G_0 \cup G_1$ with $|G_0| = |G_1| = \varkappa$ and there are one-to-one enumerations $G_0 = \{x_{\alpha}; \alpha < \varkappa\}, G_1 = \{y_{\beta}; \beta < \varkappa\}$ such that for each x_{α} , the set of vertices adjacent to x_{α} is $\{y_{\beta}; \alpha < \beta < \varkappa\}$). Let Δ_0, Δ_1 be symbols of these types: The graph G is said to establish the negative partition relation $\varkappa \to (\triangle_0, \triangle_1)^2$ if G is a graph on \varkappa vertices such that G contains no subgraph of type Δ_0 and the complement of G contains no subgraph of type Δ_1 . The main aim of this paper is to characterize the class of all countable graphs which embed into all graphs G establishing $\aleph_1 \nrightarrow (\triangle_0, \triangle_1)^2$ when \triangle_0, \triangle_1 are any of $[\aleph_1]$, $[\aleph_1, \aleph_1]$, $[\aleph_1/\aleph_1]$, $[\aleph_0, \aleph_1]$, The authors prove their theorems in ZFC, and then try to show that they are "best possible" assuming the continuum hypothesis or the existence of a Souslin tree. Occasionally Souslin's axiom is invoked instead.

N.H. Williams

Classification:

04A20 Combinatorial set theory

03E05 Combinatorial set theory (logic)

03E30 Axiomatics of classical set theory and its fragments

05C99 Graph theory