Zbl 375.05034

Articles of (and about)

Bollobás, Béla; Erdős, Paul; Simonovits, M.; Szemeredi, E.

Extremal graphs without large forbidden subgraphs. (In English)

Ann. Discrete Math. 3, 29-41 (1978).

The theory of extremal graphs without a fixed set of forbidden subgraphs is well developed. However, rather little is known about extremal graphs without forbidden subgraphs whose orders tend to ∞ with the order of the graph. In this note we deal with three problems of this latter type. Let L be a fixed bipartite graph and let $L + E^n$ be the join of L with the empty graph of order m. As our first problem we investigate the maximum of the size $e(G^n)$ of a graph G^n (i.e. graph of order n) provided $G^n \not\supset L + E^{[cn]}$, where c > 0 is a constant. In our second problem we study the maximum of $e(G^n)$ if $g^n \not\supset K_2(r,cn)$ and $G^n \not\supset k^3$. The third problem is of a slightly different nature. Let $C^k(t)$ be obtained from a cycle C^k by multiplying each vertex by t. We shall prove that if c > 0 then there exists a constant l(c) such that if $G^n \not\supset C^k(t)$ for $k=3,5,\ldots,21(c)+1$, then one can omit $[cn^2]$ edges from G^n so that the obtained graph is bipartite, provided $n > n_0(c, t)$.

Classification:

05C35 Extremal problems (graph theory)