Zbl 374.30030

Erdős, Paul; Reddy, A.R.

Articles of (and about)

Addendum to "Rational approximation". (In English)

Adv. Math. 25, 91-93 (1977). [0001-8708]

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $a_0 > 0$, $a_k \ge 0 (k \ge 1)$ be an entire function such that $l < \limsup_{r \to \infty} \frac{\log \log M(r)}{\log \log r} = \rho + 1 < \infty$ and $\limsup_{r \to \infty} (\inf) (\log r)^{-\rho - 1} \log M(r) = \alpha(\beta)$ where M(r) = 0 $\max_{\|z\|=r} \|f(z)\|$. The authors in Adv. Math. 21, 78-109 (1976; Zbl 334.30019) showed that if (*) $5 < 2\beta < 2\alpha < \infty$ then for every sequence of polynomials $\{P_n(x)\}_{n=0}^{\infty}$ of degree at most n, $\liminf_{n\to\infty} \delta_n^{n^{-1-\rho^{-1}}} \geq e^{-1}$ where $\delta_n = \left\|\frac{1}{f(x)} - \frac{1}{P_n(x)}\right\|_{L_{\infty}[0,\infty]}$.

In the present paper, they show that if (*) is replaced by (**) $0 < \beta \le$ $\alpha < \infty$, then for every polynomial $P_n(x)$ and $Q_n(x)$ of degree at most n, $\liminf_{n\to\infty} \Delta_n^{n^{-1-\rho^{-1}}} \ge G \text{ where } \Delta_n = \left\| \frac{1}{f(x)} - \frac{P_n(x)}{Q_n(x)} \right\|_{L_{-\infty}[0,\infty]} \text{ and } G =$

$$\exp\bigg\{-\left(\tfrac{2}{\beta}\right)^{1/\rho}\bigg[\alpha-1+\left(\tfrac{2\alpha}{\beta}\right)^{1/(\rho+1)}\bigg]\bigg\}.$$

O.P.Juneja

Classification:

30E10 Approximation in the complex domain