Zbl 364.05033

Busolini, D.T.; Erdős, Paul

On a problem in extremal graph theory. (In English)

J. Comb. Theory, Ser. B 23, 251-254 (1977). [0095-8956]

From the authors introduction. Let G(n,m) denote a graph (V,E) with n vertices and m edges and K_1 a complete graph with i vertices. $P. Tur\'{a}n$ proved that every G(n, T(n, k)) contains a K_k , where

$$T(n,k) = \frac{k-2}{2(k-1)}(n^2 - r^2) + \binom{r}{2} + 1,$$

 $r \equiv n \pmod{k-1}$ and $0 \le r \le k-2$.

The problem: For k a positive integer a graph g(n, m) is said to posses property P(k) if $n \geq {k+1 \choose 2}$ and it contains vertex-disjoint subgraphs K_1, K_2, \ldots, K_k . Find the least positive integer $T^*(n, k)$ such that every $G(n, T^*(n, k))$ has P(k). Clearly $T^*(n,k) \geq T(n,k)$. The following results are proved.

Theorem 1. If $n \ge 9k^2/k$ then $T^*(n,k) = T(n,k)$.

Theorem 2. There exists $\varepsilon > 0$ and $k_0 = k_0(\varepsilon)$ such that if $k > k_0$ and $\binom{k+1}{2} \le n \le \binom{k+1}{2} + \varepsilon k^2$ then $T^*(n,k) > T(n,k)$. Put $n = \binom{k+1}{2} + t$ and let e(t,k) denote the number of edges of the *n*-vertex graph X(t,k) whose complement consists of a K_{k+t+1} together with n-k-t-1 isolated vertices. Theorem 3. There exists $k_0 = k_0(t)$ such that if $k > k_0$ then $T^*(n,k) =$ e(t,k) + 1 and the only G(n, e(t,k)) without P(k) is X(t,k).

J.E. Graver

Classification:

05C35 Extremal problems (graph theory)