Zbl 333.05119

Burr, Stefan A.; Erdős, Paul

Articles of (and about)

Extremal Ramsey theory for graphs. (In English)

Utilitas Math. 9, 247-258 (1976).

For graphs G and H the Ramsey number r(G, H) is the least integer p such that in any labelled partition of the complete graph on p vertices into two graphs on the p vertices having disjoint edge sets, either the first contains a copy of G or the second contains a copy of H. The number r(G,G) is denoted by r(G) and called a diagonal Ramsey number. If \mathfrak{G} and \mathfrak{H} are sets of graphs, the authors define $\exp(\mathfrak{G}) = \min_{G \in \mathfrak{G}} r(G)$ and $\exp(\mathfrak{G}, \mathfrak{H}) = \min_{G \in \mathfrak{G}, H \in \mathfrak{H}} r(G, H)$. C_n, G_n, K_n respectively denote the following classes of graphs: connected on n vertices, n-vertex graphs without isolated vertices, and n-chromatic graphs. $B_{k,l}$ is the set of connected bipartite graphs with maximal independent sets having k and l vertices. In the theorems of $\S 2 \exp(C_m, K_n)$ and $\exp(G_m, K_n)$ are determined. §3 is concerned with connected graphs with specified chromatic numbers. In the next section the values of $\exp(B_{k,l})$ and $\exp(B_{k,l}, B_{k,l})$ are determined, also those of $\exp(C_n)$ and $\exp(C_n, C_n)$. §5 is concerned with inequalities for $\exp(G_n)$ and $\exp(G_n, G_n)$. The paper closes with several open problems and conjectures.

W.G.Brown

Classification:

05C35 Extremal problems (graph theory)

05C15 Chromatic theory of graphs and maps