Zbl 331.05122

Erdős, Paul; Faudree, Ralph J.; Rousseau, C.C.; Schelp, R.H.

The size Ramsey number. (In English)

Period. Math. Hung. 9, 145-161 (1978). [0031-5303]

Let \mathcal{C} be the class of all graphs G which satisfy $G \to (G_1, G_2)$. As a way of measuring minimality for members of \mathcal{C} , we define the size Ramsey number $\hat{r}(G_1, G_2)$ by $\hat{r}(G_1, G_2) = \min_{G \in \mathcal{C}} |E(G)|$. As usual, $\hat{r}(G)$ signifies $\hat{r}(G, G)$. For comparison purposes, we let $\hat{R}(G_1, G_2) := \binom{r(G_1, G_2)}{2}$, where $r(G_1, G_2)$ denotes the standard Ramsey number. It is clear that $\hat{r}(G_1, G_2) \leq \hat{R}(G_1, G_2)$ and we note in the paper that for all $m, n, \hat{r}(K_m, K_n) = \hat{R}(K_m, K_n)$. On the other hand, \hat{r} can be much less than \hat{R} , a notion made precise by the following definition. An infinite sequence of graphs $\{G_n\}$ is said to be an o-sequence if $\hat{r}(G_n) = o(\hat{R}(G)n)$ $(n \to \infty)$. We prove several theorems related to the o-sequence concept. For example, we prove that if m is fixed, then $\{K_{m,n}\}$ is an o-sequence. In the course of this work, we find some new results for standard Ramsey numbers. For example, letting $K_m * \bar{K}_n$ denote the graph obtained from K_m by making one of its vertices adjacent to n additional vertices, we prove that if m is fixed and n is sufficiently large, then $r(K_m * \bar{K}_n) = (m-1)(m+n-1)+1$.

P.Erdős

Classification:

05C35 Extremal problems (graph theory)